Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment

Kunlin Ran^{1,2}, on behalf of the ATLAS collaboration ¹IHEP, CAS; ²DESY

ICHEP 2020, July 31st

Introduction

- The scalar sector is the cornerstone of the SM
- A scalar potential with a vacuum expectation value v ≠ 0 originates a spontaneous breaking of the electroweak symmetry (Higgs mechanism)

•
$$V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_{HHH} v H^3 + \frac{1}{4} \lambda_{HHHH} H^4 - \frac{\lambda}{4} v^4$$

- Measuring the strength of the self-coupling λ is important to probe the properties of the scaler sector and to precisely describe the shape of Higgs boson potential
- The properties of Higgs boson self-coupling are largely unconstrained
- Measuring the Higgs self-coupling is also one of the main goals of HL-LHC and future colliders

• Combine single-Higgs and double-Higgs production analyses could maximize the sensitivity to constrain $\kappa_{\lambda} = \lambda_{HHH}/\lambda_{HHH}^{SM}$

Data and input measurement

Analysis	Integrated luminosity (fb ⁻¹)	
$H \to \gamma \gamma$	79.8	
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8	
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1	
H o au au	36.1	
$VH, H \to b\bar{b}$	79.8	
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1	
$HH \rightarrow b\bar{b}b\bar{b}$	27.5	
$HH o bar{b} au^+ au^-$	36.1	
$HH o b \bar{b} \gamma \gamma$	36.1	

- The single-Higgs and double-Higgs analyses are not all orthogonal by construction
- The overlap has been studied, the $ttH(\gamma\gamma)$ categories have been removed as they show large overlap with the $HH \rightarrow bb\gamma\gamma$ categories

Higgs self-coupling interpretations

• The non-resonant HH production processes (ggF) provide a unique chance to probe κ_{λ} with direct measurements

•
$$\sigma(pp \to HH) \sim \kappa_t^4 \left[|B|^2 + \frac{\kappa_{\lambda}}{\kappa_t} (B^*T + TB^*) + \left(\frac{\kappa_{\lambda}}{\kappa_t}\right)^2 |T|^2 \right]$$

Single Higgs processes do not depend on λ_{HHH} at LO, while its contributions need to be considered for the complete NLO EWK corrections

- An indirect constraint on λ_{HHH} can be extracted in correcting signal strength for the λ_{HHH} -dependent NLO EW effects
- $\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda}) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{SM,f}}$

Higgs self-coupling combination results

• A likelihood fit is performed to constrain κ_{λ} in the combination of single-Higgs and double-Higgs

[ATLAS-CONF-2019-049]

• $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} \left(4.6^{+2.9}_{-3.5} (stat.)^{+1.2}_{-1.2} (exp.)^{+0.7}_{-0.5} (sig.th.)^{+0.6}_{-1.0} (bkg.th.) \right) (\kappa_{\lambda} \text{ only})$

95% CL (κ_{λ} only)	Obs.	Exp.
H [<u>ATL-PHYS-PUB-2019-009</u>]	[-3.2, 11.9]	[-6.2, 14.4]
HH [Phys. Lett. B 800 (2020) 135103]	[-5.0, 12.0]	[-5.8, 12.0]
H+HH [ATLAS-CONF-2019-049]	[-2.3, 10.3]	[-5.1, 11.2]

- The sensitivity from single-Higgs and double-Higgs is similar
- The double-Higgs analysis alone doesn't have sensitivity to constrain κ_{λ} and κ_{t} simultaneously
- Only the single-Higgs and double-Higgs combination can give enough sensitivity to exploit the generic model
- The combination can better constrain κ_{λ} (~20% improvement in 95% CL)