Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment.

Kunlin Ran^{1,2}, on behalf of the ATLAS collaboration ¹IHEP, CAS; ²DESY **ICHEP 2020, July 31st**

The scalar sector and the self-coupling

 $V(\Phi^+\Phi) = -\mu^2\Phi^+\Phi + \lambda(\Phi^+\Phi)^2$ The scalar sector is the cornerstone of the SM.

A scalar potential with a vacuum expectation value $v \neq 0$ originates a spontaneous breaking of the electroweak symmetry (Higgs mechanism).

$$V(H) = \frac{1}{2} m_H^2 H^2 + \lambda_{HHH} v H^3 + \frac{1}{4} \lambda_{HHHH} H^4 - \frac{\lambda}{4} v^4$$
$$\lambda_{SM} = \frac{m_H^2}{2v^2}$$

Measuring the strength of the self-coupling λ is important to probe the properties of the scaler sector and to precisely describe the shape of Higgs boson potential.

The properties of Higgs boson self-coupling are largely unconstrained.

Measuring the Higgs self-coupling is also one of the main goals of HL-LHC and future colliders.

Direct searches for HH

The non-resonant HH production processes (ggF) provide a unique chance to probe κ_{λ} with direct measurements.

Indirect measurements of κ_{λ} using single Higgs production

Single Higgs processes do not depend on λ_{HHH} at LO, while its contributions need to be considered for the complete NLO EWK corrections.

 λ_{HHH} contributes via Higgs self energy loop corrections and additional diagrams.

An indirect constraint on λ_{HHH} can be extracted in correcting signal strength for the λ_{HHH} dependent NLO EW effects.

Signal strength:
$$\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda}) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{SM,i}} \times \frac{BR_{f}(\kappa_{\lambda})}{BR_{SM,f}}$$

The combination of single-Higgs and double-Higgs production analyses

Combine single-Higgs and double-Higgs together to maximize the sensitivity to constrain

Data and input measurement

Analysis	Integrated luminosity (fb ⁻¹)
$H \to \gamma \gamma$	79.8
$H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$)	79.8
$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	36.1
H o au au	36.1
$VH, H o bar{b}$	79.8
$t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton	36.1
$HH o bar{b}bar{b}$	27.5
$HH o bar b au^+ au^-$	36.1
$HH o bar{b}\gamma\gamma$	36.1

The single-Higgs and double-Higgs analyses are not all orthogonal by construction. The overlap has been studied, the $ttH(\gamma\gamma)$ categories have been removed as they show large overlap with the $HH \rightarrow bb\gamma\gamma$ categories.

κ_{λ} -only results

 $\kappa_{\lambda} = 4.6^{+3.2}_{-3.8} = 4.6^{+2.9}_{-3.5}(stat.)^{+1.2}_{-1.2}(exp.)^{+0.7}_{-0.5}(sig.th.)^{+0.6}_{-1.0}(bkg.th.)$

95% CL	Obs.	Exp.
H [<u>4</u>]	[-3.2, 11.9]	[-6.2, 14.4]
HH [<u>1</u>]	[-5.0, 12.0]	[-5.8, 12.0]
H+HH [<u>5</u>]	[-2.3, 10.3]	[-5.1, 11.2]
·		

The combination can better constrain κ_{λ} (~20% improvement in 95% CL).

Higgs production/decay contributions

With SM expectation ($\kappa_{\lambda} = 1$), estimate the contributions from different productions (including double-Higgs) and decay modes.

Generic model

For a more model-independent measurement, a likelihood fit is performed to constrain simultaneously κ_{λ} , κ_{W} , κ_{Z} , κ_{t} , κ_{b} and κ_{l} .

Only the single-Higgs and double-Higgs combination can give enough sensitivity to exploit this generic model.

The sensitivity from single-Higgs and double-

Higgs is similar

With the present analysis statistics,

HH (ggF) production is the most sensitive channel among all Higgs production processes, followed by ggF, single H.

 $HH \rightarrow bb\gamma\gamma$, $HH \rightarrow bb\tau\tau$ give the largest contributions in constraining κ_{λ} , followed by $H \rightarrow \gamma\gamma$.

$\kappa_{\lambda} - \kappa_{t}$ measurement

To constrain κ_{λ} , κ_{t} simultaneously, other Higgs couplings are fixed to the SM (i.e κ_W , $\kappa_Z, \kappa_b, \kappa_l$).

The double-Higgs analysis alone (black in the figure) doesn't have sensitivity to constrain κ_{λ} and κ_{t} simultaneously.

The combination of single-Higgs and double-Higgs can provide greater constraining power.

References

- [1] Combination of searches for Higgs boson pairs in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, Phys. Lett. B 800 (2020) 135103
- [2] Probing the Higgs self coupling via single Higgs production at the LHC, <u>arXiv:</u> 1607.04251
- [3] Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, arXiv: 1709.08649
- [4] Constraint of the Higgs boson self-coupling from Higgs boson differential production and decay measurements, <u>ATL-PHYS-PUB-2019-009</u>
- [5] Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment, ATLAS-CONF-2019-049

