Measurement of Higgs boson production in association with a top-quark pair in the di-photon decay channel using LHC data collected at $\sqrt{s}=13$ TeV by the ATLAS experiment

Alex Wang, on behalf of the ATLAS Collaboration

University of Wisconsin

July 30, 2020

Introduction

- The coupling of the Higgs boson to the top quark is of particular importance since the top is the heaviest particle in the Standard Model
- Higgs production in association with a pair of top quarks (ttH)
 presents a direct tree-level test of this coupling

- In ATLAS, $H \to \gamma\gamma$ is currently the most sensitive of all decay channels, and provides sensitivity both in the ttH production mode and via the virtual top contribution to the decay
- The most recent ttH $(H \to \gamma\gamma)$ result is part of a larger measurement of Higgs properties in the $H \to \gamma\gamma$ channel with the full Run 2 139 fb^{-1} dataset

ttH in Higgs property measurements $(H \rightarrow \gamma \gamma)$

- The recent analysis of Higgs properties in the $H \to \gamma \gamma$ channel targets ttH production along with other Higgs production through the STXS (simplified template cross section) framework
- A multi-class BDT creates various categories sensitive to particular STXS regions, while a second binary BDT then rejects non-resonant background in each category
- Training variables include kinematic variables related to photons, jets, leptons, and reconstructed tops
- In particular, there are both ttH and tH dedicated categories

ttH in Higgs property measurements $(H \rightarrow \gamma \gamma)$

- Higgs production cross sections are measured from a simultaneous fit on $m_{\gamma\gamma}$
- In the 5 production mode measurement, the observed (expected) ttH + tH significance is **4**. **7** σ (5.0 σ).
- In the STXS measurement, ttH is divided into bins of p_T^H as this can be sensitive to modifications to the ttH CP or the Higgs self coupling

• This is one of the first differential measurements of the ttH process. The tH

limit is much improved w.r.t. previous ATLAS results

All results are consistent with the standard model

Sum of Weights / GeV	25 1 20 1 10 1 10 1 10 1	+	Total Bac	m Background kground Background	nd $\sqrt{s} = 13$ $m_H = 12$ All categor	weighted:	, ip 1
Data - Cont. Bkg.	10 5 7	110	120	130	140	150 m _{yy}	160 [GeV]

\overline{STXS} region $(\sigma_i imes \mathcal{B}_{\gamma\gamma})$		SM prediction [fb]
$t\overline{t}H p_T^H \in [0,60]$ GeV	$0.2^{+0.2}_{-0.2}$	$\textbf{0.27} \pm \textbf{0.04}$
$tar{t}H\ p_T^H\in$ [60, 120] GeV	$0.3^{+0.2}_{-0.2}$	$0.40^{+0.05}_{-0.04}$
$tar{t}H\ p_T^H\in$ [120, 200] GeV	$0.3^{+0.2}_{-0.2}$	$\textbf{0.29} \pm \textbf{0.03}$
$tar{t}H\ p_T^H\in extbf{[120,200]}\ ext{GeV} \ tar{t}H\ p_T^H\in extbf{[200,\infty]}\ ext{GeV}$	$0.2^{+0.09}_{-0.08}$	$\textbf{0.18} \pm \textbf{0.02}$
tH	$0.2^{+0.6}_{-0.5}$	$0.19^{+0.01}_{-0.02}$