
Searching for Neutral BSM Higgs Bosons in the au au Decay Channel Using Full Run-2 Data from the ATLAS Detector

Analysis basics

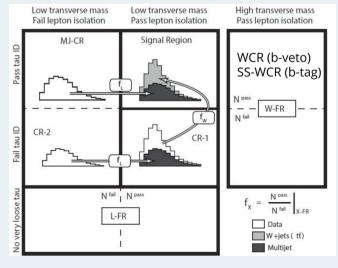
- ► 140 fb⁻¹ of data from \sqrt{s} =13 TeV pp collisions
- searching for neutral MSSM Higgs bosons (CP-odd and -even)
- paper published in PRL: Phys. Rev. Lett. 125 (2020) 051801
- new limits:

Event selection

Had-had:

- leading $\tau_{\rm had}$ matched to trigger, medium ID (BDT), $p_{\rm T}:$ +5 GeV over trigger
- subleading $\tau_{\rm had}$ loose ID (BDT), $p_{\rm T} > 65$ GeV
- opposite charge, back to back ($\Delta \varphi > 2.7$)
- \triangleright veto events with e, μ

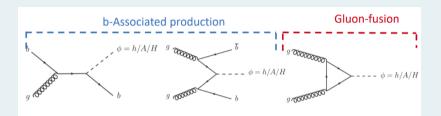
Lep-had:


- $ightharpoonup au_{\text{lep}}$ matched to trigger (p_{T} and isolation criteria)
- lacksquare au_{had} medium ID (BDT), $p_{\mathsf{T}}>$ 25 GeV, $|\eta|<$ 2.7 GeV
- lacksquare opposite charge, back to back ($\Delta arphi > 2.4$)
- $m_{\mathsf{T}}(\mathsf{lep}, E_{\mathsf{T}}^{\mathsf{miss}}) = \sqrt{2p_{\mathsf{T}}^{\mathsf{lep}}E_{\mathsf{T}}^{\mathsf{miss}}[1 \cos\Delta\phi(\mathsf{lep}, E_{\mathsf{T}}^{\mathsf{miss}})]} < 40~\mathsf{GeV}$
- ightharpoonup exclude events with 80 < m(au au) < 110 GeV (e-had)

Backgrounds

- MC: $W \to l(\tau)\nu + \text{jets}, Z/\gamma^* \to ll(\tau\tau)$, diboson, $t\bar{t}$ and single thad-had MC uses data-driven jet $\to \tau$ fake rates
- data-driven fake factors: QCD in both had-had and lep-had, W+jets (b-veto) and $t\bar{t}$ (b-tag) in lephad

Data-driven background estimation


► Lep-had - QCD and W+jets/t̄t:

► Had-had - QCD only, similar method

Production and decay

- ightharpoonup Higgs b-associated production ightharpoonup tag category
- lacktriangle Higgs gluon-gluon fusion o b-veto category

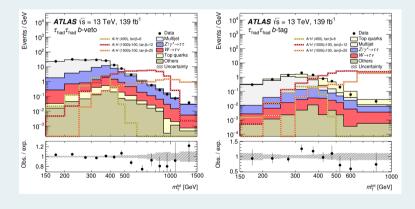
tau decay: hadronic mode 65% of the time, leptonic 35% of the time
 → analysis split into had-had and lep-had categories

Systematic uncertainties

MC:

- theoretical cross-section calculation
- luminosity, pile-up uncertainty
- efficiency of reco, ID, triggering algorithms
- energy scale and resolution of $e, \mu, \tau, (b-)$ jets, E_{τ}^{miss}

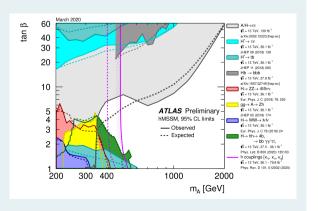
Data-driven background estimates:


► fake factors (limited size of fake regions, background subtraction)

Fit model

- parameter of interest: signal strength $\mu = \frac{(\sigma \times BR)_{\text{observed}}}{(\sigma \times BR)_{\text{predicted}}}$
- discriminating variable:

$$m_{\mathsf{T}}^{\mathsf{tot}} = \sqrt{m_{\mathsf{T}}^2(E_{\mathsf{T}}^{\mathsf{miss}}, { au}_1) + m_{\mathsf{T}}^2(E_{\mathsf{T}}^{\mathsf{miss}}, { au}_2) + m_{\mathsf{T}}^2({ au}_1, { au}_2)}$$


• fit function: likelihood function constructed as the product of Poisson probability terms (one for each bin in m_T^{tot})

Model interpretations

hMSSM scenario:

- mass of lighter
 CP-even Higgs
 boson is 125 GeV
- masses of SUSY partners are heavy

