# Imperial College London



# Higgs boson measurements in final states with taus at CMS

D. Winterbottom ICHEP 2020 conference 30/07/2020

#### Overview

- 1. General introduction to SM H→TT analyses
- 2. Cross section measurements in the  $H \rightarrow \tau \tau$  final state
- 3. Measurement of the CP properties of the  $H \rightarrow \tau \tau$  decay

# Introduction to SM H→TT analyses

#### H→tt overview

- $H \rightarrow TT$  can probe directly the properties of the Yukawa coupling to tau leptons
- H→TT has relatively high BR and is quite clear so can be used to probe regions of phase space with small cross sections: e.g VBF-like phase space, boosted

Higgs

- But ditau final state not without challenges
- Taus are unstable and decay to leptons or hadrons plus v's
- Because of v's can't reconstruct
  Higgs system exactly



• Analyses presented today use most sensitive final states:  $e\mu$ ,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$ 

#### Tau identification

- Leptonically decaying tau reconstructed with standard CMS electron / muon identification
- Hadronic tau identification starts
  with hadron plus strips (HPS) algorithm
- HPS identifies charged hadrons and clusters together e/ $\gamma$  from  $\pi^0$  decays into "strips"
- Multiclass DNN based algorithm (DeepTau)
  then used to reject fakes from jets, electrons, and muons



CMS-DP-2019-033

- DeepTau ID used for the first time for H→TT analysis gives significant improvements over older BDT-based ID!
- More detail in talk by Andrea Cardini yesterday <u>here</u>

# Modelling of backgrounds

- Largest irreducible background from events with 2 genuine τ leptons: mainly Z→ττ
- Estimated using semi-data-driven method:
  μ→τ embedding method





- Background with jet→τ<sub>h</sub> fakes estimated from data driven method: fake rate method
- All other smaller background from MC
- Altogether ~ 90% of background estimated from data-driven methods

# Cross section measurements in the H→TT final state

#### Higgs cross section measurements

- Increased data yield in Run2 open the door to precision measurements of Higgs
  - cross sections
- Cross section of different production processes can be measured with good precision
- Measurements in simplified template cross section (STXS)

framework minimises dependence on theory and allows results to be reinterpreted easily by theory community

 Latest cross section results using 137/fb of 13 TeV data presented in these slides: HIG-19-010



## **Analysis strategy**

- The analysis targets the 4 most sensitive decay channels:  $e\mu$ ,  $e\tau_h$ ,  $\mu\tau_h$ ,  $\tau_h\tau_h$
- Events are split into 3 categories to target the different production modes: 0-jet (no jets present in event), VBF (at least 2 jets +  $m_{jj}$  or  $|\Delta\eta|_{jj}$  cuts), boosted (= everything else)
- Categories are then split into sub-categories to target specific STXS bins using equivalent reco. variables to match definition of GEN selections ( $N_{iets}$ ,  $p_T^H$ , etc.)
- Fits of 2D discriminants to enhance sensitivity: 1 variable always ditau mass (m<sub>π</sub>), and 2nd variable either m<sub>jj</sub>, p<sub>T</sub><sup>H</sup>, p<sub>T</sub><sup>T</sup>



#### Inclusive cross section results

- Results extracted by simultaneous binned maximum likelihood fit
- The measured cross sections for the inclusive Higgs, ggH, and qqH relative to SM
- Right plot all categories are combined and weighted by S/B





## 2D scans of coupling modifiers

 Results interpreted as 2D scans of ggH and VBF coupling modifiers (left) and fermionic and bosonic coupling modifiers (right)





#### STXS results

- The Measured value of STXS signal strengths are shown
- Some STXS bins are merged: 2 different schemes
  <u>process-based</u> and topology-based





#### STXS results

- The Measured value of STXS signal strengths are shown
- Some STXS bins are merged: 2 different schemes process-based and <u>topology-based</u>





# Measurement of the CP properties of the H→TT decay

### First measurement of H→TT CP properties

- Long history of HVV CP measurement but coupling to fermions less tested
- Results by CMS (<u>arXiv:2003.10866</u>) and ATLAS (<u>arXiv:2004.04545</u>) on ttH coupling
- CP properties of coupling to tau leptons complementary to these results
- Yukawa interaction parameterised as:

$$\mathcal{L}_Y = -rac{m_ au}{v} \kappa_ au ar{ au} au + ilde{\kappa}_ au ar{ au} i \gamma_5 au$$

Define parameter Φ<sub>++</sub> as:

$$an \phi_{ au au} = rac{\kappa_ au}{\kappa_ au}$$

• CP-even:  $|\Phi_{\tau\tau}| = 0^{\circ}$ , CP-odd:  $|\Phi_{\tau\tau}| = 90^{\circ}$ , CP-mix:  $0^{\circ} < |\Phi_{\tau\tau}| < 90^{\circ}$ 

# Observable sensitive to Φ<sub>++</sub>

- CP-even:  $|\Phi_{\tau\tau}| = 0^{\circ}$ , CP-odd:  $|\Phi_{\tau\tau}| = 90^{\circ}$ , CP-mix:  $0^{\circ} < |\Phi_{\tau\tau}| < 90^{\circ}$
- Angle between tau decay planes in Higgs rest frame,  $\Phi_{CP}$ , sensitive to  $\Phi_{TT}$



#### Reconstructing decay planes

- We can't reconstruct tau decay planes exactly instead use approximations
- For events with intermediate  $\rho^-$  resonances  $(\tau \to \rho^- v \to \pi^- \pi^0 v)$  define plane using  $\pi^-$  and  $\pi^0$  momenta
  - ightharpoonup Or for τ→a<sub>1</sub>ν→ρ<sup>0</sup>πν→⁻π⁻π⁻π⁺ν use π⁻π⁺ pair from intermediate ρ<sup>0</sup>
- When no  $\rho$  is present use impact parameters ( $\lambda$ ) and charged particle 4-vector ( $\pi^{-}/\mu$ )
- All planes reconstructed in  $\pi^+\pi^-$  rest frame<sub>z</sub>
- Current analysis considers most Sensitive final states in  $\mu \tau_h$ ,  $\tau_h \tau_h$  channels:  $(\mu, \rho, \pi, a_1^{1pr}, a_1^{3pr}) \times (\rho, \pi, a_1^{1pr}, a_1^{3pr})$
- Most sensitive: μρ, ρρ, πρ



## **Analysis strategy**

- Signal vs background differentiation using multi-class BDT (NN) for  $\tau_{b}$ ,  $\tau_{b}$  ( $\mu\tau_{b}$ ,) channels: includes kinematic variables e.g  $m_{\tau\tau} p_T$ 's,  $m_{ii}$ ,  $N_{iets}$ , etc.
- 3 classes: genuine  $\tau_h$ , fake  $\tau_h$ , and Higgs (merge VBF + ggH + VH(hadronic))
- **Events classified as Higgs** used to extract CP information
- Fit 2D distribution of BDT/NN Score vs  $\Phi_{CP}$
- More details in HIG-20-006



#### H→тт CP: results

- Simultaneous maximum likelihood fit used to extract results
- Measured value of  $\Phi_{\tau\tau}$  is  $4 \pm 17$  ° [=  $4 \pm 17$  (stat)  $\pm 2$  (bbb)  $\pm 1$  (theo)  $\pm 1$  (syst) °]
- Assuming all other couplings = SM can be interpreted in terms of  $\kappa_{_{\rm T}}$ 's parameters





#### H→тт CP: results

- To illustrate the result the 3 most sensitive channels are weighted and combined into a plot of  $\Phi_{CP}$
- Each BDT/NN score window is weighted by A S/(S+B)
- A = the "average asymmetry":

$$A=rac{1}{N_{bins}}\sumrac{|Exp^{ ext{CP-even}}-Exp^{ ext{CP-odd}}|}{Exp^{ ext{CP-even}}+Exp^{ ext{CP-odd}}}$$

- $\mu\rho$  channel is phase shifted by 180 °
- Clear preference for the CP-even
  Scenario: CP-odd exclusion at 3.2σ
  (2.3σ expected)



#### **Conclusions**

- The latest results of inclusive cross section and STXS measurement have been presented
- Inclusive cross section measured: µ= 0.85 +0.12 -0.11
- A measurement of the CP properties of the HTT coupling has been presented for the first time
- Measured value of  $\Phi_{TT}$  is  $4 \pm 17^{\circ}$ , CP-odd exclusion at  $3.2\sigma$

# Thanks for your attention!

# Backup

#### Comparison of embedded and MC predictions

 The prediction of the dijet invariant mass variable using embedded samples if compared to data and to MC simulation



#### 2D distributions

• Examples of 2D distributions that are fitted to extract results in the e $\mu$  and  $\tau_h \tau_h$  and channels





## Stage 1.2 STXS category definition for qqH



### STXS merging schemes

- Merging is performed to reduce number of bins with large uncertainties and/or large correlations between bins/processes
- Process based:
  - ggH and qqH process treated separately
  - Some neighbouring bins in STXS qqH and ggH categories merged
- Topology based:
  - ggH and qqH tied together for VBF-like topology bins
  - Some STXS bins also merged for non VBF-like bins but keeping ggH and qqH seperate

#### Correlations between STXS bins



#### Reconstructing decay modes and IPs

- Dedicated BDT discriminator to reconstruct τ<sub>h</sub> decay mode
- More details in poster talk by Mohammad Hassan Hassanshahi tomorrow (here)
- Gives significant improvements over HPS decay mode application
- IP reconstruction improved in 2 ways:
  - Use of refitted PV excluding tau tracks and using constraint from LHC luminous region "beam spot constraint" (more details <a href="here">here</a>)
  - Minimize distance between track and PV numerically in 3D taking into account helical track geometry
- Reconstruction of IP also estimate an uncertainty used to define a significance:  $SIP = \sigma IP/|IP|$
- Cut of SIP>1.5 used to reject poorly reconstructed events

### PV resolution comparisons

- The resolution of vertex definition used for the CP analysis is compared to the nominal CMS definition
- Vertex is refit excluding tau tracks and with use of beam-spot constraint



#### Validation with **Z**→TT

- $Z \rightarrow TT$  has ~ flat distribution of  $\Phi_{CP}$
- But we can split into two sinusoidal contributions using α<sub>\_</sub> variable
- Definition in paper by <u>Stefan</u>
  <u>Berge et al.</u>



# $\Phi_{CP}$ by channel

• Weighted  $\Phi_{CP}$  plots are shown individually for the 3 most sensitive channels







# Fitted distributions for CP Extraction

 The 2D fitted distributions for 3 /4 of the most sensitive channels are shown



