Precision calorimetry at high luminosity: the CMS electromagnetic calorimeter from the LHC Run 2 to the HL-LHC

Dario Soldi on behalf of the CMS collaboration **ICHEP 2020**

Virtual Conference, 29 July 2020

The CMS ECAL Calorimeter in a nutshell

- The Electromagnetic calorimeter (ECAL) of the CMS experiment:
 - high granularity: (75848) crystals
 - **lead tungstate PbWO**₄: fast decay scintillation light (25 ns), short radiation lenght ($X_0 = 0.89$ cm), small Moliere radius (2.2 cm)
 - avalanche photo-diodes (APDs) sensors
- Fundamental to detect high energy e/γ
 - **Good di-photon mass resolution**: ~1%
- **Crucial role** for the discovery of the Higgs boson in the final states with two photons or four leptons.

The Run 2 Conditions

Higher integrated Luminosity wrt Run 1:

- Larger irradiation dose
- increase of loss of light of crystals (transparency degradation), and of radiation-induced ageing of photodetectors and of detector readout

CMS Integrated Luminosity Delivered, pp

Larger pileup (PU) wrt Run 1:

from higher bunch intensities, and from 25 ns bunch spacing (larger out-of-time PU) \rightarrow impact on ECAL pulse reconstruction

CMS Average Pileup

ICHEP 2020

How to maintain performances at best in Run 2

- every 48 hours.

More infos in Dmitri Konstantinov's poster

We monitor each channel with dedicate laser system performed every 40 minutes: corrections provided

Regular calibrations allow to maintain an excellent energy resolution and a good stability over the time Multi-fit algorithm considering out-of-time pulse effects to mitigate the PU at the reconstruction level

The challenge of High Lumi

ECAL must maintain the same performances during the Phase 2, when the pile up will be 5-7 times larger.

At luminosity of $5 \cdot 10^{34}$ cm²s⁻¹ we get 1 fb⁻¹ in 5.5 hours

Phase 2 implies:

- Higher trigger rate (from 100 kHz to 750 kHz)
- Higher data bandwidth
- Higher radiation \rightarrow higher noise
- core ("spikes")

Actions:

- Substitution of the Endcap part of ECAL with a new High Granularity calorimeter.
- Reduction of the temperature from 18° to 9° Celsius degrees to mitigate the APD dark current
- out @ L1

higher anomalous high energy (\geq 100 GeV) signals induced by hadrons interacting directly with the APD

Upgrade of the Ecal Barrel Electronics to have: precise timing + spike rejection + full detector read-

Precise timing in Phase 2

To maintain the reconstruction performance at 140-200 pileup: precise timing in calorimeter is needed

At 200 pileup the primary vertex reconstruction efficiency is reduced to 30% for $H \rightarrow \gamma \gamma$ decays

the vertex localisation efficiency can be improved with precise (30ps) timing: 10% improvement in the fiducial cross-section sensitivity and $H \rightarrow \gamma \gamma$ resolution compared to no precise timing case

The new readout chain is specified to deliver the desired time resolution of 30ps for energies > 50 GeV

units

arbitrary

without precise timing

with precise timing (30ps) in calorimeter Adding the timing layer to precisely tag MIPs (see Nan Lu presentation on Tuesday)

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Compression, how to

Direct connections between LiTE-DTU and lpGBT e-links

- LITE-DTU rate: 13-bit words @ 160 MHz \rightarrow 2.08 Gb/s
- IpGBT e-link rate: 1.28 Gb/s
- LiTE-DTU rate after compression → 1.08 Gb/s

Simplified Huffman Code

ain	Significant	Sample	Output
nple	non-zero bits	Classification ^a	(Nbits)
10	\leq 6 bits	"Baseline" sample	6 bits
10	> 6 bits	"Signal" sample	13 bits (MSB = 0)
:1	any value	"Signal" sample	13 bits (MSB = 1)

► 6 bits corresponds to ~2.4 GeV

Probability to have > 2.4 GeV:

► 7.3 x 10⁻⁵, 1.6 x 10⁻⁴, 5.8 x 10⁻⁴ @ $\eta = 0$, 0.8, 1.4

CATIA ASIC Performances from Test Beam

Electron beam, energy range: 25 - 250 GeV

Setup kept at 18 °C (current ECAL operating temperature)

Energy resolution matches legacy electronics

One ECAL tower (25 channels) equipped with CATIA chip connected with 160 MHz commercial ADC

Time resolution matches targets

CATIA ASIC Performances

- Much improved rejection of spikes in the EB photodetectors.
- obtained with the new shorter pulse shaping

Dario Soldi

Several tests are ongoing to characterise the full electronics chain

- Radiation Hardness of the devices
- Characterisation of CATIA (gain, noise)
- Characterisation of the Lite-DTU ADC
 - Effective Number of Bits, INL, DNL, Calibration...
- Connection between CATIA and Lite-DTU

Further ongoing tests

ICHEP 2020

The transition from the Run 2 conditions to the High-Luminosity for the CMS ECAL calorimeter has been presented

- In Run 2 the increased Pile-Up and radiation required to constantly monitor and calibrate the detector;
- The system maintained an excellent energy resolution together with a good stability over the time
- Nevertheless, for Phase 2, further interventions are needed:
 - The Endcap substitution
 - Reduced temperature in the Barrel
 - A brand new electronics has been redesigned for the ECAL Barrel:
 - \blacktriangleright it will provide a time resolution of ~30 ps to mitigate the PU effects;
 - it will provide a new shaping electronics to reject spikes already at the read-out level
 - reading each single channel it will provide a full detector read-out for the trigger

Tests with the Lite-DTU block are ongoing.

THANK YOU FOR YOUR ATTENTION

Conclusions

Preliminary results from the test bench have shown promising results with only CATIA + Commercial ADC.

Integration of CATIA and Lite-DTU

Dario Soldi

Single channel board

- CATIA+LITE-DTU
- Equipped with 16-bit DAC
- Analog switch
 - Mux CATIA and DAC/DC signals

Allows to:

- Investigate calibration procedure
- Study LiTE-DTU DC performances
- Study CATIA/LiTE-DTU interface

Test Setup In Torino

Data Compression Unit

Dario Soldi

Compression, how to

Direct connections between LiTE-DTU and lpGBT e-links

- LITE-DTU rate: 13-bit words @ 160 MHz \rightarrow 2.08 Gb/s
- IpGBT e-link rate: 1.28 Gb/s
- LiTE-DTU rate after compression → 1.08 Gb/s

Simplified Huffman Code

ain	Significant	Sample	Output
nple	non-zero bits	Classification ^a	(Nbits)
10	\leq 6 bits	"Baseline" sample	6 bits
10	> 6 bits	"Signal" sample	13 bits (MSB = 0)
:1	any value	"Signal" sample	13 bits (MSB = 1)

► 6 bits corresponds to ~2.4 GeV

Probability to have > 2.4 GeV:

► 7.3 x 10⁻⁵, 1.6 x 10⁻⁴, 5.8 x 10⁻⁴ @ $\eta = 0$, 0.8, 1.4

Temperature effect on the APD dark current

The ECAL Barrel crystal light is read-out with Avalanche Photodiodes (APD).

- The APDs are Si photodiodes with internal amplification.
- The leakage current increases with the hadron fluence.
- The APD leakage current is measured at the HV crates.

