Search for resonant di-Higgs production with the CMS detector

40th International conference on High Energy Physics

28 July - 6 August 2020

Alessia Saggio¹

On behalf of the CMS Collaboration

¹Deutsches Elektronen-Synchrotron DESY Email: alessia.saggio@cern.ch

Di-Higgs production: a portal to new physics

- Our efforts are focused on looking for physics beyond the Standard Model
- The Higgs sector is a portal to new physics
- **Di-Higgs production** is of special interest
- Why? And how does it manifest itself?

SM-like

Di-Higgs in a nutshell

- NON-RESONANT • HH production cross section at 13 TeV at the LHC =~ 33 fb (NNLO in QCD)
- However, BSM models predict rate enhancement
- BSM physics can appear via

Anomalous couplings of the Higgs

New particles that decay to a Higgs pair

- g 7000 0000 g ' Η Η Η g 7000 - H Η g ′ 0000 BSM $h g \mathcal{F}$ - h g 0000Cg hg $\overline{000}$
- Non-resonant di-Higgs golden channel to study the **Higgs potential**
- Probe the Higgs trilinear coupling (λ)
- BSM effects can be added through dim-6 operators in the Lagrangian

RESONANT

Di-Higgs in a nutshell

- HH production cross section at 13 TeV at the LHC =~ 33 fb (NNLO in QCD)
- However, BSM models predict rate enhancement
- BSM physics can appear via 🔫

Anomalous couplings of the Higgs

New particles that decay to a Higgs pair

- Higgs pair can be a decay product of a new heavy particle
- Predicted by different BSM models:
 - Randall-Sundrum Warped Extra Dim (scalar radion/ spin-2 graviton)
 - Higgs singlet model
 - 2HDM, MSSM
- Large mass range probed: 250 GeV to (currently) 3 TeV

Di-Higgs in a nutshell

- HH production cross section at 13 TeV at the LHC =~ 33 fb (NNLO in QCD)
- However, BSM models predict rate enhancement
- BSM physics can appear via 🗸

Anomalous couplings of the Higgs

New particles that decay to a Higgs pair

- Higgs pair can be a decay product of a new heavy particle
- Predicted by different BSM models:
 - Randall-Sundrum Warped Extra Dim (scalar radion/ spin-2 graviton)
 - Higgs singlet model
 - 2HDM, MSSM

• Large mass range probed: 250 GeV to (currently) 3 TeV

Di-Higgs in a nutshell

- HH production cross section at 13 TeV at the LHC =~ 33 fb (NNLO in QCD)
- However, BSM models predict rate enhancement
- BSM physics can appear via 🛹

New particles that decay to a Higgs pair

- Higgs pair can be a decay product of a new heavy particle
- Predicted by different BSM models:
 - Randall-Sundrum Warped Extra Dim (scalar radion/ spin-2 graviton)
 - Higgs singlet model
 - 2HDM, MSSM
- Large mass range probed: 250 GeV to (currently) 3 TeV

A large variety of final states

- Large variety of final states possible
- Decay channels chosen based on BR and purity
- The main ones are:
 - **bb bb**: highest BR, high QCD/tt contamination
 - bb WW: high BR, large irreducible tt
 - **bb** $\tau\tau$: relatively low background
 - **bb ZZ bb** γγ **bb** γγ

Next slides: overview of recent results on 2016 dataset

$X \rightarrow HH \rightarrow bbbb$

Topology dependent on the mass range probed

- Low m_x: bb pairs can be resolved
- Intermediate m_x (up to 2000 GeV): one pair treated as resolved, one as merged
- High m_x: pairs cannot be resolved, two fully-merged

٠

-
-

$X {\rightarrow} HH {\rightarrow} bbbb$

Di-Higgs overview

$X \rightarrow HH \rightarrow bb \tau \tau$

- Select events with one isolated τ_{had} and a second

lepton of opposite charge (e, μ , τ_{had})

- Events categorised according to number of b-jets
- Main backgrounds: tt, DY (from sim.), multijet (data-

driven)

- BDT used to discriminate against tt
- Search for excess in m_{HH} from kinematic fit

$X \rightarrow HH \rightarrow bb \tau \tau$

m_A in 230—360 GeV and up to $tan\beta \sim 2$ excluded at 95% CL

$X \rightarrow HH \rightarrow bb VV$

VV→2ℓ2*ν*, V=Z,W

JHEP01(2018)054

- Events can come from **WW*** $\rightarrow \ell \nu \ell \nu$ or **ZZ*** $\rightarrow \nu \nu \ell \ell$
- Require two isolated and opposite-sign leptons and two b-tagged jets
- Categorisation according to lepton flavours and m_{jj}
- Backgrounds: tt (from sim.), DY (data-driven)
- Parametric DNN to scan over different m_X
- DNN output as final discriminant

$X \rightarrow HH \rightarrow bb VV$

VV→2ℓ2*ν*, V=Z,W

35.9 fb⁻¹ (13 TeV)

180

120

100

140

160

200

 $m_{_{
m b\overline{b}}}$ [GeV]

 $m_{\rm w}$ bkg.

X→HH→bb VV

WW*→**qq'**ℓ*v*

0.5

40

60

80

• **b-quark pair** reconstructed as **single jet**

- Require one isolated lepton nearby jet of merged W→qq' decay products
- Main background: tt, suppressed by reconstructing the HH

decay chain and applying mass constraints

2D distribution of $m_{\mbox{\tiny bb}}$ and $m_{\mbox{\tiny HH}}$ used to extract limits •

$X {\rightarrow} HH {\rightarrow} bb \ VV$

WW*→**qq'**ℓ*v*

Resonant searches at 36 fb-1

$X {\rightarrow} HH {\rightarrow} bb \ VV$

ZZ*→ℓℓ qq,*νν*

arXiv:2006.06391

- First search where Z decays hadronically
- Main backgrounds: DY+jets and tt (multijet) (data-driven)

bbffdd

- assign jets to Z and H according to b-tag discriminant and H mass constraint
- BDT to discriminate against multijet background
- Search for excess in **BDT discriminant distribution**

• **bbll***vv*:

- $m_{\ell\ell}$ > 76 GeV to reduce contribution from bbWW search
- Search for excess in HH transverse mass distribution

CMS

 $pp \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$

High-mass region

Medium-purity category

120

GeV)

Events/(1

40

30

100

110

Data

160

140

$X \rightarrow HH \rightarrow bb \gamma\gamma$

- Select events with **two identified photons** and **two b-jets**
- Categorisation according to BDT discriminant and HH reduced mass
- 2D signal extraction from parametric fit of m_{jj} and $m_{\gamma\gamma}$

CMS

pp→HH→bδ̄γγ

High-mass region

Medium-purity category

100

120

GeV)

Events/(5

140-

120

100

80

60

20

80

• Main **background**: $(\gamma)\gamma$ + jets, data-driven

Data

35.9 fb⁻¹ (13 TeV)

Full background model

Nonresonant background

SM HH signal (x100)

160

170

m_{γγ} [GeV]

180

130

140

150

$X \rightarrow HH$ combination

Combination performed on <u>bb bb</u>, <u>bb WW/ZZ \rightarrow bb $\ell \nu \ell \nu$ </u>, <u>bb $\tau \tau$ </u>, <u>bb $\gamma \gamma$ </u>

Phys. Rev. Lett. 122, 121803

Conclusions

- Resonant di-Higgs production is fundamental in search for new physics
- BSM models predict cross section enhancement
- Large variety of final states investigated: trade-off between BR and purity
- Important to explore and combine many decay channels
- The CMS Collaboration has delivered excellent results with 2016 data
- We all look forward to more results from searches on full Run II data
- Stay tuned!

Conclusions

- Resonant di-Higgs production is fundamental in search for new physics
- BSM models predict cross section enhancement
- Large variety of final states investigated: trade-off between BR and purity
- Important to explore and combine many decay channels
- The CMS Collaboration has delivered excellent results with 2016 data
- We all look forward to more results from searches on full Run II data
- Stay tuned!

THANK YOU FOR YOUR ATTENTION

Backup slides

HH production

Production dominated by gluon-fusion

- Destructive interference between the heavy-quark square loop (a) and the Higgs self-coupling (b) production modes
- BSM Higgs boson pair production could proceed through changes to the Higgs couplings, for example the ttH⁻ or HHH couplings which contribute to (a) and (b), or through an intermediate resonance, X, which could, for example, be produced through a quark loop (c)

Channel	$\mathcal{B}\left[\% ight]$
bbbb	33.6
bb au au	7.3
bbWW($\ell \nu \ell \nu$)	1.7
$bb\gamma\gamma$	0.26
$bbZZ(\ell\ell\ell\ell)$	0.015

Warped Extra Dimension formulation

- One small spacial extra dimensions where the SM particles are not allowed to propagate through it
- Resonant particle produced can be
 - **radion** (spin-0): production cross section proportional to $1/\Lambda_R$, Λ_R =interaction scale parameter of the theory; other free parameter: kL, with k constant appearing in the metric of the theory and L size of the extra dimension
 - graviton (spin-2): free parameter is k
- Main process is gluon-gluon fusion

JHEP08(2018)152

$X \rightarrow HH \rightarrow bbbb$

- b-jets randomly paired, then choose Higgs candidates:
 - Low mass region: |m_H 120 GeV| < 40 GeV
 - Medium mass region: $\Delta R < 1.5$
- Circular SR around Higgs mass in 2D phase space
- Di-jet inv. mass resolution for mH1 and mH2 is up to 13%
- Further improved by applying regression to estimate a correction for the jet energy, computed for individual b-jets
 - BDT trained on simulated b-jets from tt events
- Average improvement in the Higgs boson mass resolution, measured with simulated signal samples, is 6–12%, depending on the p_T of the reconstructed Higgs boson.
- Improves sensitivity up to 20%, depending on the mass hypothesis
- Local p-value of most significant excess (deficit) is 2.6 (-3.6) std. dev.
 - LEE -> global p-value in percent range

Figure 1: The selection efficiency for simulated $X \rightarrow H(b\overline{b})H(b\overline{b})$ events for a spin-0 radion (left) and a spin-2 bulk KK-graviton (right), at different stages of the event selection for each mass hypothesis, for the low-mass region (solid) and the medium-mass region (dashed). The vertical line at 580 GeV corresponds to the transition between the LMR and MMR regions.

$X \rightarrow HH \rightarrow bbbb$

Main backgrounds:

- multi-jets (90%), estimated from data
- tt+jets (10%), estimated from MC

Reduced di-Higgs invariant mass to correct for fluctuations from jet mass resolution -> improvement of up to 10% in HH mass resolution:

- $m_{Jjj,red} = m_{Jjj} (m_J m_H) (m_{jj} m_H)$ semi-resolved
- m_{JJ,red} = m_{JJ} (m_{J1} m_H) (m_{J2} m_H) fully-merged

Semi-resolved, fully-merged

Radion has higher S/N in low DeltaEta because of the angular distribution of its decay products —> improvement up to 55% w.r.t. fully-merged

ICHEP 2020 | Alessia Saggio

260

750

3000

m_x [GeV]

X→HH→bbbb

Di-Higgs overview

statistical independence

- Reduced di-Higgs mass corrects fluctuations from jet mass resolution —> 10%
 improvement in HH mass resolution
- Below 2 TeV, the sensitivity improves up to 55% for radion w.r.t. fully-merged analysis thanks to the DeltaEta categorisation: radion has higher S/N in low

DeltaEta because of the angular distribution of its decay products

Semi-resolved, fully-merged

JHEP01(2019)040

			0			
Mass	Obs. lim.	Exp. lim.	+Exp (68%)	-Exp (68%)	+Exp (95%)	-Exp (95%)
(GeV)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)
750	43.9	41.0	27.4	64.8	19.6	101
800	28.2	24.9	16.7	38.5	12.1	59.2
900	23.6	16.4	11.1	25.2	8.1	38.4
1000	14.6	11.9	8.0	18.6	5.9	28.8
1200	5.5	5.9	3.9	9.3	2.9	14.5
1600	3.1	3.0	1.9	4.9	1.3	8.1
2000	2.2	2.0	1.3	3.5	0.9	6.1
2500	1.4	1.4	0.8	2.4	0.5	4.2
3000	1.4	1.9	1.2	3.0	0.9	5.3

Bulk graviton

Mass	Obs. lim.	Exp. lim.	+ Exp (68%)	-Exp (68%)	+Exp (95%)	-Exp (95%)
(GeV)	(fb)	(fb)	(fb)	(fb)	(fb)	(fb)
750	67.0	64.5	42.8	101	30.9	158
800	44.3	39.8	26.6	62.2	19.1	96.8
900	31.2	28.6	19.8	43.1	15.9	65.1
1000	22.0	17.5	11.8	27.1	8.6	41.8
1200	8.5	9.1	6.1	14.3	4.4	22.3
1600	4.4	4.3	2.8	7.1	1.9	11.6
2000	3.5	3.0	1.8	5.1	1.3	8.9
2500	1.7	2.0	1.3	3.6	0.8	6.1
3000	1.6	2.3	1.6	3.7	1.2	6.2

Table 4. The observed and expected upper limits on the products of the cross sections and branching fraction $\sigma(pp \rightarrow X)B(X \rightarrow HH \rightarrow b\bar{b}b\bar{b})$ for a bulk graviton from the combination of the fully-merged and semi-resolved channels (where the events used in the fully-merged analysis are not considered in the semi-resolved analysis). Results above 2000 GeV are taken directly from the fully-merged analysis [39].

Table 5. The observed and expected upper limits on the products of the cross sections and branching fraction $\sigma(pp \to X)B(X \to HH \to b\bar{b}b\bar{b})$ for a radion from the combination of the fully-merged and semi-resolved channels (where the events used in the fully-merged analysis are not considered in the semi-resolved analysis). Results above 1600 GeV for the radion are taken directly from the fully-merged analysis [39].

Radion

arXiv:2006.06391

HH->bbZZ

Di-Higgs overview

$\mathsf{ZZ}^* \rightarrow \ell \ell \nu \nu$

- mll > 76 GeV to reduce contribution from HH->bbWW, search is orthogonal to previous one
- SR: 70 < mll < 106 GeV && 90 < mbb < 150 GeV
- DY-enriched CR: 70 < mll < 106 GeV && (mbb < 90 GeV OR mbb > 150 GeV)
- tt-enriched CR: mll > 106 GeV && 90 < mbb < 150 GeV
- First Higgs reconstructed from b-jets, second from leptons and MET
- Mass-dependent cut on pTmiss to reduce contribution from DY+jets, QCD, ZH
- For further discrimination: BDTs trained in each lepton channel, spin hypothesis and mass range (250–450GeV, >450GeV)
 - Minimum BDT value required for candidates in the signal region
- DY+jets (tt): estimated from simulated events normalised to data in Z-(tt-)enriched region
- Transverse mass: $\widetilde{M}_{\rm T}({\rm hh})=\sqrt{E^2-p_{z^*}^2}$ with E and pz of Lorentz-vector of HH candidate

Higgs sector extension: N2HDM

- Enhancement of HH cross section can be produced in the N2HDM: 2HDM + real singlet
- Broken phase: both the Higgs doublets and the singlet acquire vev
- Mixing between these states produces 3 *CP*-even Higgs bosons H₁, H₂, and H₃, with masses that are free parameters of the model
- Consider the nearly mass-degenerate case: masses of H₁ and H₂ are constrained to the experimental measurements of the h125 mass, but may give rise to manifestly non-SM-like rates in the case of hh production
- Higgs boson cascade decays: H₃ can decay to any combination of bosons H₁ and H₂, which then both can have different decay branching fractions compared to the SM Higgs boson.
- The model spectrum depends on:
 - the ratio of the vevs of the two Higgs doublets tan β, low values of which enhance H₃ production
 - the vev of the singlet, which affects the decay branching fractions of $\rm H_3$ to $\rm H_1$ and $\rm H_2$
 - three mixing angles, which determine the decay branching fractions of $\rm H_1$ and $\rm H_2$

Х→HH→bb үү

- Reduced mass: $\widetilde{M}_{\rm X} = m_{\gamma\gamma j \rm j} (m_{\rm j \rm j} m_{\rm H}) (m_{\gamma\gamma} m_{\rm H})$
- BDT trained to increase discrimination power of signal-like events
- To make BDT output independent of $m_{\gamma\gamma}$ and m_{jj} , trained with ensemble of signal samples
- SM single Higgs background estimated from simulation (ggF, VBF, tt/ bb associated)
- Categorization:

Table 3: Definition of high-purity category (HPC) and medium-purity category (MPC) for the resonant and nonresonant analyses.

Analysis	Region	Classification MVA	Μ _X
	High-mass	HPC: MVA > 0.97	$\widetilde{M}_{\rm V} > 350 {\rm GeV}$
Nonresonant	riigii-mass	MPC: 0.6 < MVA < 0.97	$M\chi > 550 \text{ GeV}$
	Low-mass	HPC: MVA > 0.985	$\widetilde{M}_{\rm V}$ < 350 GeV
	Low-mass	MPC: $0.6 < MVA < 0.985$	$M_{\rm X} < 550 {\rm GeV}$
Resonant	$m_{\rm X} > 600{\rm GeV}$	HPC: $MVA > 0.5$	Mass window
		MPC: $0 < MVA < 0.5$	Mass willow
	$m_{\rm X} < 600{\rm GeV}$	HPC: $MVA > 0.96$	Mass window
		MPC: $0.7 < MVA < 0.96$	Mass willow

- Double-sided Crystal Ball used for parametrisation of 2D mass plane
- Ngamma+jets background estimated from mass sidebands
- Very sensitive analysis thanks to excellent diphoton mass resolution of the CMS experiment for this channel (1.6 GeV)

Classification MVA

ICHEP 2020 | Alessia Saggio