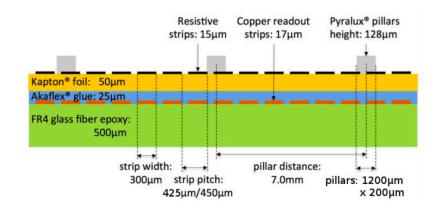


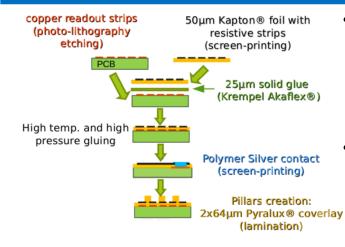
Production and test of Micromegas boards for the ATLAS New Small Wheel project

L. Longo (CERN) on behalf of the ATLAS Muon Collaboration

Micromegas for the ATLAS New Small Wheel


CERN

Drift Panel

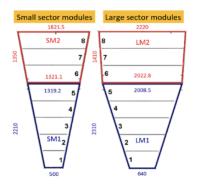

New Small Wheel (NSW) project: ATLAS Small Wheel upgrade with Micromegas (MM) and small-strip Thin Gap Chamber (sTGC) technologies

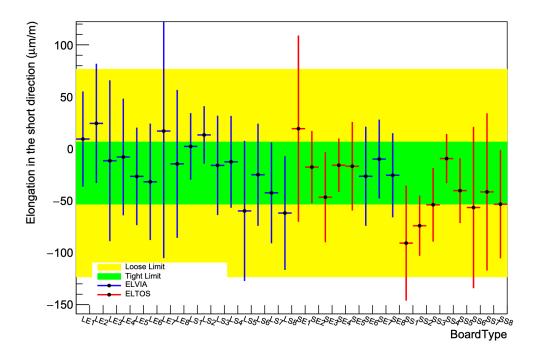
MM detectors cover 1280 m² being the largest system based on Micro Pattern Gaseous Detector (MPGD) eadout Pan -aap chambers (TGC) Cathode strip chambers (CSC eadout Panel 4 TGC + PCB with Copper Coating Readout String Mesh &Gas Supporting Frame 3rd + 4th laver: 360mm Stereo planes 1st + 2nd laver: 79 mm Eta planes New Small Wheel wedge End-can toroid New Small Wheel Monitored drift tubes (MDT) Structure of a quadruplet ATLAS experiment

Micromegas readout (RO) anode boards

Micromegas anode boards production

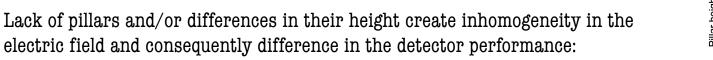
- Resistive protection layer produced in Japan (Matsuda-Screen Inc.). Quality control at Kobe university.
- Readout boards are manufactured in PCB industry:
 - ELTOS (IT).
 - ELVIA (FR).

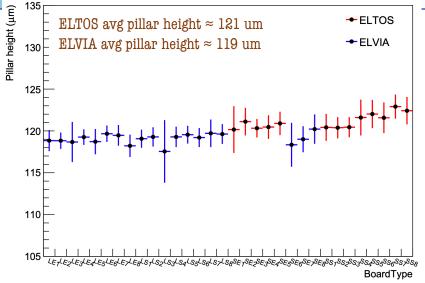


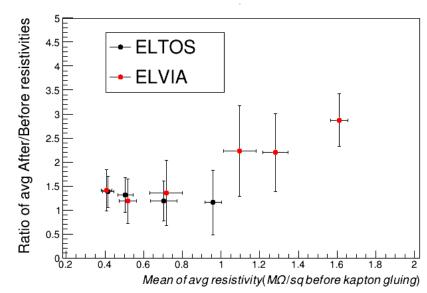

PCB industry is limited to 600 mm wide PCBs \rightarrow PCB size kept in one dimension below 600 mm with no constraint on the other one:

- 32 types of PCB to fit the large (L) and small (S) modules dimensions and to produce eta (E) and stereo (S) layers (i.e. SE1: Small sector, Eta layer, PCB 1);
- total production of about 3000 boards;
- the boards undergo Quality Assurance and Quality Control (QA/QC) tests at CERN
 - visual inspection, electrical tests;
 - allignment and rotation between resistive pattern and copper strips;
 - cutting and milling accuracy.

Board dimension foundamental for precise tracking. FR4 material is subject to expansion for moisture uptake:


- expansion of about 400um/m;
- rescaling the dimensions for the board production;
- waiting a 4 weeks period at the companies to let the boards expand before final cutting/drilling;
- dimensions measurement performed at CERN to track the possible elongation with respect to the nominal dimensions.


Technology transfer & quality control


- dedicated surface treatments for having a rougher surface which ensures good pillar adhesion;
- replacement of the missing pillars;
- 2D pillars height map to evaluate a possible shift in the pillar height (tolerance of 5um).

The resistance of the boards plays a crucial role for the high-voltage stability of the detector:

- resistance/sq (resistivity) can change during the boards production because of the pressing applied during the gluing step, the surface treatments or problems in foils production;
- temperature and pressure during the gluing step are tuned to have a final resistivity within the specifications (ex. average resistivity between 0.28 and 2.6 M Ω /sq);
- resistivity before and after the gluing procedure is measured on all the foils and boards respectively.

