

Measurement of the Higgs \overline{CP} in its decay to τ leptons

Mohammad Hassan Hassanshahi

On behalf of the CMS collaboration 31 July 2020

ICHEP conference

Motivation and theory

- > The Standard Model (SM) Higgs boson is even under charge-parity (CP) inversion. Some of the extensions of the SM predict the existence of a CP-odd component of the Higgs.
- > A pure CP-odd scenario was excluded by measuring the Higgs coupling to gauge bosons (CMS and ATLAS).
- > But a mixed CP scenario is still possible and is more accessible through the fermionic coupling of the Higgs.
- This study is the **first direct measurement** of the CP structure of the Yukawa coupling between the Higgs and τ leptons. The measurement is performed in the $H \to \tau^+ \tau^-$ decay.
- \triangleright The $H\tau\tau$ coupling can be decomposed into CP-even and CP-odd terms:

- ightharpoonup Defining the CP mixing angle as $\tan(\phi_{\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$
 - $\phi_{\tau\tau} = 0^{\circ}$: CP-even Higgs
 - $\phi_{\tau\tau} = 90^{\circ}$: CP-odd Higgs
 - $\phi_{\tau\tau} = 45^{\circ}$: maximum-mixing CP Higgs
- $ightharpoonup \phi_{\tau\tau}$ can be measured using the variable, ϕ_{CP} , which is defined from the angle between the decay products of $\bar{\tau}\tau$:

$$\frac{d\sigma}{d\phi_{CP}} \propto \cos(\phi_{CP} - 2\phi_{\tau\tau})$$
, [arXiv: 1308.2674]

ϕ_{CP} measurement and optimizations

ϕ_{CP} measurement

- The ϕ_{CP} is the angle between two planes, each defined by the "visible" products of τ^+ and τ^- (Fig. 2)
 - "visible" means neutrinos excluded
 - In a single visible particle decay (e.g. π^{\pm}), the plane is defined with the help of its impact parameter (more on arXiv: 1510.03850)

Optimizations

- ➤ Identify signal $(H \to \tau^- \tau^+)$ from background: Machine learning (ML) techniques
- \triangleright Identify τ hadronic decays: ML techniques (Fig. 3)
 - 10 to 55 %-points improvement in purity of decay channels and ~20% improvement in CP sensitivity
- ➤ Primary vertex (PV) reconstruction (Fig. 4)
 - Exclude τ tracks from the PV fit + use beamspot constraints. Transverse resolution improved by O(3)
- ➤ Impact parameter (IP):
 - 3D reconstruction + Exclude events with low IP significance

 $\pi^{-}\pi^{+}\pi^{-}\pi^{0}$

Result

CMS

- The observed (expected) sensitivity to distinguish between CP-even and CP-odd scenario is 3.2σ (2.3σ).
- Fig. 5 shows the negative log-likelihood scan of $\phi_{\tau\tau}$. The observed (expected) $\phi_{\tau\tau}$ is found to be $4^{\circ} \pm 17^{\circ}$ ($0^{\circ} \pm 23^{\circ}$) at 68% CL.
- \succ Fig. 6 shows a 2D negative log-likelihood scan of κ_{τ} and $\tilde{\kappa}_{\tau}$.
- The next-to-minimal supersymmetric model (NMSSM) allows up to $\pm 27^{\circ}$ CP violation [arXiv: 1508.03255]. Our result exclude a part of the phase space in this model at 68% CL.
- The ϕ_{CP} distribution for the three most sensitive decay channels can be seen in Fig. 7. "A" is a measure showing asymmetry between CP-even and CP-odd $A = \frac{|CP^{even} CP^{odd}|}{|CP^{even} + CP^{odd}|}, \text{ (averaged over all bins)}$
- **Conclusion:** The result is compatible with the SM prediction within uncertainties. The pure CP-odd scenario is rejected by 3.2σ .

