

ICHEP 2020

Prague, July 30, 2020

Constraining resonances by using the EW effective theory

Ignasi Rosell
Universidad CEU Cardenal Herrera
València (Spain)

In collaboration with:

A. Pich (IFIC, UV-CSIC, València, Spain) J.J. Sanz-Cillero (UCM, Madrid, Spain)

Accepted in PRD [arXiv: 2004.02827]
JHEP 05 (2019) 092 [arXiv: 1810.10544]
JHEP 04 (2017) 012 [arXiv: 1609.06659]
PRD 93 (2016) no.5, 055041 [arXiv: 1510.03114]
JHEP 01 (2014) 157 [arXiv: 1310.3121]
PRL 110 (2013) 181801 [arXiv: 1212.6769]

OUTLINE

- 1) Motivation
- 2) The effective Lagrangians
 - 1) Low energies: the non-linear Electroweak Effective Theory
 - 2) High energies: Resonance Electroweak Theory
 - 3) Matching low and high energies
- 3) Phenomenology: estimation of the bosonic LECs
- 4) Conclusions

OUTLINE

1) Motivation

Also known as HEFT or EWChL

2) The effective Lagrangians

- 1) Low energies: the non-linear Electroweak Effective Theory
- 2) High energies: Resonance Electroweak Theory
- 3) Matching low and high energies
- 3) Phenomenology: estimation of the bosonic LECs
- 4) Conclusions

1. Motivation

- The Standard Model (SM) provides an extremely successful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.

 Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.

Effective Field Theories

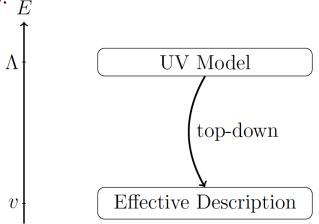
^{*} CMS and ATLAS Collaborations.

1. Motivation

- The Standard Model (SM) provides an extremely successful description of the electroweak and strong interactions.
- A key feature is the particular mechanism adopted to break the electroweak gauge symmetry to the electroweak subgroup, SU(2)_L x U(1)_Y → U(1)_{QED}, so that the W and Z bosons become massive. The LHC discovered a new particle around 125 GeV*.

• Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap. $_E$

Effective Field Theories



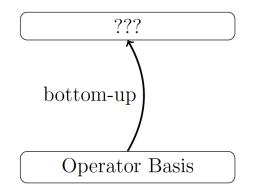


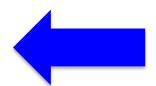
Diagram by C. Krause [PhD thesis, 2016]

^{*} CMS and ATLAS Collaborations.

- Depending on the nature of the EWSB we have two possibilities for these EFTs* (or something in between):
 - The more common decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones, as in the SM)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - The more general non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions
 - Some composite Higgs models can be described within the EWET.

^{*} LHCHXSWG Yellow Report '16

- Depending on the nature of the EWSB we have two possibilities for these EFTs* (or something in between):
 - The more common decoupling (linear) EFT: SMEFT
 - SM-Higgs (forming a doublet with the EW Goldstones, as in the SM)
 - Weakly coupled
 - LO: SM
 - Expansion in canonical dimensions
 - The more general non-decoupling (non-linear) EFT: EWET, HEFT, EWChL
 - Non-SM Higgs (being a scalar singlet)
 - Strongly coupled
 - LO: Higgsless SM + scalar h + 3 GB (chiral Lagrangian)
 - Expansion in loops or chiral dimensions
 - Some composite Higgs models can be described within the EWET.



^{*} LHCHXSWG Yellow Report '16

Estimation of the LECs

Estimation of the Low Energy Constants (LECs) of the EWET in terms of resonance parameters.

Short-distance constraints

Short-distance contraints are fundamental because we understand the resonance Lagrangian as an interpolation between low- and high energies and in order to reduce the number of resonance parameters.

Phenomenology

Following a typical bottom-up approach, what values for resonance masses from phenomenology?

Estimation of the LECs

Estimation of the Low Energy Constants (LECs) of the EWET in terms of resonance parameters.

Short-distance constraints

Short-distance contraints are fundamental because we understand the resonance Lagrangian as an interpolation between low- and high energies and in order to reduce the number of resonance parameters.

Phenomenology

Following a typical bottom-up approach, what values for resonance masses from phenomenology?

Estimation of the LECs

Estimation of the Low Energy Constants (LECs) of the EWET in terms of resonance parameters.

Short-distance constraints

Short-distance contraints are fundamental because we understand the resonance Lagrangian as an interpolation between low- and high energies and in order to reduce the number of resonance parameters.

Phenomenology

Following a typical bottom-up approach, what values for resonance masses from phenomenology?

Similarities to Chiral Symmetry Breaking in QCD

- i) Custodial symmetry: The Lagrangian is approximately invariant under global $SU(2)_L \times SU(2)_R$ transformations. Electroweak Symmetry Breaking (EWSB) turns to be $SU(2)_L \times SU(2)_R \rightarrow SU(2)_{L+R}$.
- ii) Similar to the Chiral Symmetry Breaking (ChSB) occurring in QCD, *i.e.*, similar to the "pion" Lagrangian of Chiral Perturbation Theory (ChPT)* $^{\wedge}$, by replacing f_{π} by v=1/ $\sqrt{(2G_F)}$ =246 GeV. Rescaling naïvely we expect resonances at the TeV scale.

^{*} Weinberg '79

^{*} Gasser and Leutwyler '84 '85

^{*} Bijnens et al. <u>'99 '00</u>

^{**} Ecker et al. '89

^{**} Cirigliano et al. '06

[^]Dobado, Espriu and Herrero '91

[^]Espriu and Herrero '92

[^]Herrero and Ruiz-Morales '94

Estimation of the LECs

Estimation of the Low Energy Constants (LECs) of the EWET in terms of resonance parameters.

Short-distance constraints

Short-distance contraints are fundamental because we understand the resonance Lagrangian as an interpolation between low- and high energies and in order to reduce the number of resonance parameters.

Phenomenology

Following a typical bottom-up approach, what values for resonance masses from phenomenology?

Similarities to Chiral Symmetry Breaking in QCD

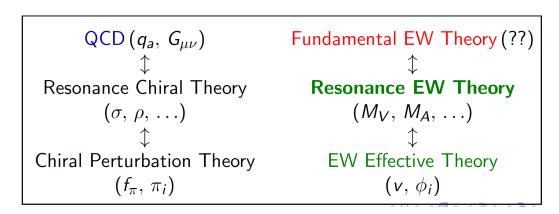


Diagram by J. Santos [VIII CPAN days, 2016]

2. The effective Lagrangians

- Two strongly coupled Lagrangians for two energy regions:
 - Electroweak Effective Theory (EWET) at low energies (without resonances).
 - ✓ Resonance Electroweak Theory at high energies* (with resonances).
- ✓ The aim of this work:

Estimation of the Low-Energy Constants (LECs) in terms of resonance parameters and phenomenological consequences: constraining the BSM heavy masses.

- Steps:
 - 1. Building the EWET and resonance Lagrangian
 - 2. Matching the two effective theories
 - 3. Phenomenology at low energies.
- ✓ High-energy constraints
 - 1. From QCD we know the importance of sum-rules and form factos at large energies.
 - 2. Operators with a large number of derivatives tend to violate the asymptotic behaviour.
 - 3. The constraints are required to reduce the number of unknown resonance parameters.
- ✓ This program works pretty well in QCD: estimation of the LECs (Chiral Perturbation Theory) by using Resonance Chiral Theory** and importance of short-distance constraints***.

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

^{**} Cirigliano et al. '06

^{***} Ecker et al. '89

2. The effective Lagrangians

- Two strongly coupled Lagrangians for two energy regions:
 - Electroweak Effective Theory (EWET) at low energies (without resonances).
 - ✓ Resonance Electroweak Theory at high energies* (with resonances).
- ✓ The aim of this work:

Estimation of the Low-Energy Constants (LECs) in terms of resonance parameters and phenomenological consequences: constraining the BSM heavy masses.

✓ Steps:

- 1. Building the EWET and resonance Lagrangian
- Matching the two effective theories
- 3. Phenomenology at low energies.

Bottom-up approach

- ✓ High-energy constraints
 - 1. From QCD we know the importance of sum-rules and form factos at large energies.
 - 2. Operators with a large number of derivatives tend to violate the asymptotic behaviour.
 - 3. The constraints are required to reduce the number of unknown resonance parameters.
- ✓ This program works pretty well in QCD: estimation of the LECs (Chiral Perturbation Theory) by using Resonance Chiral Theory** and importance of short-distance constraints***.

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

^{**} Cirigliano et al. '06

How do we build the Lagrangian?

- Custodial symmetry
- Degrees of freedom:
 - At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
 - ✓ At high energies: previous dof + resonances (V,A,S,P and fermionic)
- Chiral power counting*

$$rac{\chi}{w} \sim \mathcal{O}\left(p^0
ight) = rac{\psi}{w} \sim \mathcal{O}\left(p
ight) = \partial_{\mu}, \, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, \, g' \sim \mathcal{O}(p)$$

^{*} Weinberg '79

^{*} Appelquist and Bernand '80

^{*} Longhitano '80 '81

^{*} Hirn and Stern '05

^{*} Alonso et al. '12

^{*} Delgado et al. '14

^{*} Manohar, and Georgi '84

^{*} Buchalla, Catá and Krause '13 * Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Gasser and Leutwyler '84 '85 * Brivio et al. '13

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

How do we build the Lagrangian?

- Custodial symmetry
- Degrees of freedom:
 - ✓ At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
 - ✓ At high energies: previous dof + resonances (V,A,S,P and fermionic)
- ✓ Chiral power counting*

$$rac{\chi}{v} \sim \mathcal{O}\left(p^0
ight) = rac{\psi}{v} \sim \mathcal{O}\left(p
ight) = \partial_{\mu}, \, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, \, g' \sim \mathcal{O}(p)$$

$$\mathcal{M}(2 \to 2) \ \approx \ \frac{p^2}{v^2} \ \left[\ 1 \ + \ \left(\frac{c_k^r \, p^2}{v^2} \ - \ \frac{\Gamma_k \, p^2}{16\pi^2 v^2} \, \ln \frac{p}{\mu} + \ldots \right) \ + \ \mathcal{O}(p^4) \ \right]$$

$$\frac{\mathsf{NLO}}{\mathsf{NLO}} \ \ \frac{\mathsf{NLO}(1\text{-loop})}{\mathsf{NLO}(16\pi^2 v^2)}$$

$$\frac{\mathsf{Suppression}}{\mathsf{Suppression}} \ \ \frac{\mathsf{Suppression}}{\mathsf{Suppression}} \ \ \frac{\mathsf{Suppression}}{\mathsf{NLO}(16\pi^2 v^2)}$$

$$\frac{\mathsf{NLO}(1\text{-loop})}{\mathsf{NLO}(16\pi^2 v^2)}$$

$$\frac{\mathsf{NLO}(1\text{-loop})}{\mathsf{NLO}(16\pi^2 v^2)}$$

* Weinberg '79

* Longhitano '80 '81

* Alonso et al. '12

* Delgado et al. '14

* Manohar, and Georgi '84

* Buchalla, Catá and Krause '13 * Pich, IR, Santos and Sanz-Cillero '16 '17

* Gasser and Leutwyler '84 '85 * Brivio et al. '13

* Krause, Pich, IR, Santos and Sanz-Cillero '19

Diagram by J.J. Sanz-Cillero [HEP 2017]

How do we build the Lagrangian?

- Custodial symmetry
- Degrees of freedom:
 - At low energies: bosons χ (EW goldstones, gauge bosons, h), fermions ψ
 - ✓ At high energies: previous dof + resonances (V,A,S,P and fermionic)
- ✓ Chiral power counting*

$$rac{\chi}{v} \sim \mathcal{O}\left(p^0
ight) = rac{\psi}{v} \sim \mathcal{O}\left(p
ight) = \partial_{\mu}, \, m \sim \mathcal{O}(p) = \mathcal{T} \sim \mathcal{O}(p) = g, \, g' \sim \mathcal{O}(p)$$

$$\mathcal{M}(2\to 2) \approx \frac{p^2}{v^2} \left[1 + \left(\frac{c_k^r p^2}{v^2} - \frac{\Gamma_k p^2}{16\pi^2 v^2} \right) + \mathcal{O}(p^4) \right]$$

$$\frac{10}{\text{NLO}(15\text{to})} \text{NLO}(15\text{to})$$

$$\text{suppression}$$

$$\text{suppression}$$

$$\text{heavier states)} \text{ (non-linearity)}$$

* Weinberg '79

* Appelquist and Bernand '80

ernand '80 * Hirn and Stern '05 1 * Alonso et al. '12

* Delgado et al. '14

* Longhitano <u>'80 '81</u>
* Manohar, and Georgi '84

* Buchalla, Catá and Krause '13 * Pich, IR, Santos and Sanz-Cillero '16 '17

* Gasser and Leutwyler <u>'84</u> <u>'85</u>

Diagram by J.J. Sanz-Cillero [HEP 2017]

$$\mathcal{L}_{\text{EWET}}^{(2)} = \sum_{\xi} \left(i \,\bar{\xi} \gamma^{\mu} d_{\mu} \xi - v \left(\,\bar{\xi}_{L} \,\mathcal{Y} \,\xi_{R} + \text{h.c.} \right) \right)$$

$$- \frac{1}{2g^{2}} \langle \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \rangle_{2} - \frac{1}{2g'^{2}} \langle \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \rangle_{2} - \frac{1}{2g_{s}^{2}} \langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_{3}$$

$$+ \frac{1}{2} \partial_{\mu} h \,\partial^{\mu} h - \frac{1}{2} \,m_{h}^{2} \,h^{2} - V(h/v) + \frac{v^{2}}{4} \,\mathcal{F}_{u}(h/v) \,\langle u_{\mu} u^{\mu} \rangle_{2}$$

^{*} Longhitano '80 '81

^{*} Buchalla et al. '12 '14

^{*} Alonso et al. '13

^{*} Guo, Ruiz-Femenia and Sanz-Cillero '15

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_{i} \, \mathcal{O}_{i} + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_{i} \, \widetilde{\mathcal{O}}_{i} + \sum_{i=1}^{8} \mathcal{F}_{i}^{\psi^{2}} \, \mathcal{O}_{i}^{\psi^{2}}$$

$$+ \sum_{i=1}^{3} \widetilde{\mathcal{F}}_{i}^{\psi^{2}} \, \widetilde{\mathcal{O}}_{i}^{\psi^{2}} + \sum_{i=1}^{10} \mathcal{F}_{i}^{\psi^{4}} \, \mathcal{O}_{i}^{\psi^{4}} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_{i}^{\psi^{4}} \, \widetilde{\mathcal{O}}_{i}^{\psi^{4}}$$

Bosonic sector

i	\mathcal{O}_i	$\widetilde{\mathcal{O}}_i$
1	$\frac{1}{4} \langle f_+^{\mu\nu} f_{+\mu\nu} - f^{\mu\nu} f_{-\mu\nu} \rangle_2$	$\frac{i}{2} \langle f^{\mu\nu} [u_\mu, u_\nu] \rangle_2$
2	$\frac{1}{2} \langle f_{+}^{\mu\nu} f_{+\mu\nu} + f_{-}^{\mu\nu} f_{-\mu\nu} \rangle_{2}$	$\langle f_+^{\mu\nu} f_{-\mu\nu} \rangle_2$
3	$\frac{i}{2} \langle f_+^{\mu\nu} [u_\mu, u_\nu] \rangle_2$	$\frac{(\partial_{\mu}h)}{v} \langle f_{+}^{\mu\nu}u_{\nu} \rangle_{2}$
4	$\langle u_{\mu}u_{\nu}\rangle_2\langle u^{\mu}u^{\nu}\rangle_2$	_
5	$\langle u_{\mu}u^{\mu}\rangle_2^2$	_
6	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$	_
7	$\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2} \langle u^{\mu}u^{\nu} \rangle_2$	_
8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$	_
9	$\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$	
10	$\langle \mathcal{T} u_{\mu} \rangle_2^2$	
11	$\hat{X}_{\mu\nu}\hat{X}^{\mu\nu}$	_
12	$\langle \hat{G}_{\mu\nu} \hat{G}^{\mu\nu} \rangle_3$	_

^{*} Longhitano '80 '81

^{*} Buchalla et al. '12 '14

^{*} Alonso et al. '13

^{*} Guo, Ruiz-Femenia and Sanz-Cillero '15

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \, \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i \, \widetilde{\mathcal{O}}_i + \sum_{i=1}^{8} \mathcal{F}_i^{\psi^2} \, \mathcal{O}_i^{\psi^2}$$

$$+ \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^2} \, \widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \, \mathcal{O}_i^{\psi^4} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_i^{\psi^4} \, \widetilde{\mathcal{O}}_i^{\psi^4}$$

2.2. High energies: Resonance Electroweak Theory (with resonances)**

$$\mathcal{L}_{\mathrm{RT}} = \mathcal{L}_{\mathrm{R}}[R, \chi, \psi] + \mathcal{L}_{\mathrm{non-R}}[\chi, \psi]$$

- Bosonic resonances:
 - V, A, S and P
 - SU(2) singlets and triplets
 - SU(3) singlets and octets
 - Spin-1 resonances with Proca or antisymmetric formalism
- Fermionic doublet resonances:
 - Including operators with one heavy fermionic resonance

Field (R ^{QCD} _{EW})	R¹ ₁	R ¹ ₃	R ⁸ ₁	R ⁸ ₃
S	3	1	1	1
P	1	2	1	1
V with Proc	3	2	2	2
A with Proc	3	2	2	2
V with ant.	2	5	2	1
A with ant.	2	5	2	1
Fermionic	6			

^{**} Pich, IR, Santos and Sanz-Cillero '16 '17

^{**} Krause, Pich, IR, Santos and Sanz-Cillero '19

$$\mathcal{L}_{\text{EWET}}^{(4)} = \sum_{i=1}^{12} \mathcal{F}_i \, \mathcal{O}_i + \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i \, \widetilde{\mathcal{O}}_i + \sum_{i=1}^{8} \mathcal{F}_i^{\psi^2} \, \mathcal{O}_i^{\psi^2}$$

$$+ \sum_{i=1}^{3} \widetilde{\mathcal{F}}_i^{\psi^2} \, \widetilde{\mathcal{O}}_i^{\psi^2} + \sum_{i=1}^{10} \mathcal{F}_i^{\psi^4} \, \mathcal{O}_i^{\psi^4} + \sum_{i=1}^{2} \widetilde{\mathcal{F}}_i^{\psi^4} \, \widetilde{\mathcal{O}}_i^{\psi^4}$$

2.2. High energies: Resonance Electroweak Theory (with resonances)**

$$\mathcal{L}_{\mathrm{RT}} = \mathcal{L}_{\mathrm{R}}[R, \chi, \psi] + \mathcal{L}_{\mathrm{non-R}}[\chi, \psi]$$

- Bosonic resonances:
 - V, A, S and P
 - SU(2) singlets and triplets
 - SU(3) singlets and octets
 - Spin-1 resonances with Proca or antisymmetric formalism
- Fermionic doublet resonances:
 - Including operators with one heavy fermionic resonance

$$e^{iS_{\mathrm{eff}}[\chi,\psi]} = \int [\mathrm{d}R] \, e^{iS[\chi,\psi,R]}$$

- ✓ Integration of the heavy modes
- ✓ Similar to the ChPT case***
- ✓ EWET LECs in terms of resonance parameters**
- Tracks of resonances in the EWET.

^{2.3.} Matching low and high energies

^{**} Pich, IR, Santos and Sanz-Cillero '16 '17

^{**} Krause, Pich, IR, Santos and Sanz-Cillero '19

^{***} Ecker et al. '89

3. Phenomenology: estimation of the bosonic LECs*

✓ Integration of the heavy modes

$$e^{i\mathbf{S}_{\mathbf{eff}}[\chi,\psi]} = \int [\mathrm{d}R] \, e^{iS[\chi,\psi,R]}$$

✓ The case of P-even bosonic operators**:

i	\mathcal{O}_i	\mathcal{F}_i
1	$\frac{1}{4} \langle f_+^{\mu\nu} f_{+\mu\nu} - f^{\mu\nu} f_{-\mu\nu} \rangle_2$	$-\frac{F_V^2 - \widetilde{F}_V^2}{4M_{V_3^1}^2} + \frac{F_A^2 - \widetilde{F}_A^2}{4M_{A_3^1}^2}$
3	$\frac{i}{2} \left\langle f_+^{\mu\nu} [u_\mu, u_\nu] \right\rangle_2$	$-rac{F_VG_V}{2M_{V_3^1}^2}-rac{\widetilde{F}_A\widetilde{G}_A}{2M_{A_3^1}^2}$
4	$\langle u_{\mu}u_{\nu}\rangle_2\langle u^{\mu}u^{\nu}\rangle_2$	$\frac{G_V^2}{4M_{V_3^1}^2} + \frac{\widetilde{G}_A^2}{4M_{A_3^1}^2}$
5	$\langle u_{\mu}u^{\mu}\rangle_{2}\langle u_{\nu}u^{\nu}\rangle_{2}$	$ \frac{c_d^2}{4M_{S_1^1}^2} - \frac{G_V^2}{4M_{V_3^1}^2} - \frac{\widetilde{G}_A^2}{4M_{A_3^1}^2} $
6	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$	$-rac{\widetilde{\lambda}_{1}^{hV}{}^{2}v^{2}}{M_{V_{3}^{1}}^{2}}-rac{\lambda_{1}^{hA}{}^{2}v^{2}}{M_{A_{3}^{1}}^{2}}$
7	$\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2} \langle u^{\mu}u^{\nu} \rangle_2$	$ \frac{d_P^2}{2M_{P_3^1}^2} + \frac{\lambda_1^{hA~2}v^2}{M_{A_3^1}^2} + \frac{\widetilde{\lambda}_1^{hV~2}v^2}{M_{V_3^1}^2} $
8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$	0
9	$\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$	$-\frac{F_A\lambda_1^{hA}v}{M_{A_3^1}^2}-\frac{\widetilde{F}_V\widetilde{\lambda}_1^{hV}v}{M_{V_3^1}^2}$

^{**} Pich, IR, Santos and Sanz-Cillero '17

^{**} Krause, Pich, IR, Santos and Sanz-Cillero '19

^{***} Guo, Ruiz-Femenía and Sanz-Cillero '15

^{*} Pich, IR, Santos and Sanz-Cillero '16

^{*} Pich, IR and Sanz-Cillero '20

3. Phenomenology: estimation of the bosonic LECs*

✓ Integration of the heavy modes

$$e^{i\mathbf{S}_{\mathbf{eff}}[\chi,\psi]} = \int [\mathrm{d}R] \, e^{iS[\chi,\psi,R]}$$

✓ The case of P-even bosonic operators**:

i	\mathcal{O}_i	\mathcal{F}_i
1	$\frac{1}{4} \langle f_+^{\mu\nu} f_{+\mu\nu} - f^{\mu\nu} f_{-\mu\nu} \rangle_2$	$-\frac{F_V^2 - \widetilde{F}_V^2}{4M_{V_3^1}^2} + \frac{F_A^2 - \widetilde{F}_A^2}{4M_{A_3^1}^2}$
3	$\frac{i}{2} \left\langle f_+^{\mu\nu} [u_\mu, u_\nu] \right\rangle_2$	$-rac{F_{V}G_{V}}{2M_{V_{3}^{1}}^{2}}-rac{\widetilde{F}_{A}\widetilde{G}_{A}}{2M_{A_{3}^{1}}^{2}}$
4	$\langle u_{\mu}u_{\nu}\rangle_2\langle u^{\mu}u^{\nu}\rangle_2$	$\frac{G_V^2}{4M_{V_3^1}^2} + \frac{\widetilde{G}_A^2}{4M_{A_3^1}^2}$
5	$\langle u_{\mu}u^{\mu}\rangle_{2}\langle u_{\nu}u^{\nu}\rangle_{2}$	$ \frac{c_d^2}{4M_{S_1^1}^2} - \frac{G_V^2}{4M_{V_3^1}^2} - \frac{\widetilde{G}_A^2}{4M_{A_3^1}^2} $
6	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)}{v^2} \langle u_{\nu}u^{\nu} \rangle_2$	$-rac{\widetilde{\lambda}_1^{hV}{}^2v^2}{M_{V_3^1}^2}-rac{\lambda_1^{hA}{}^2v^2}{M_{A_3^1}^2}$
7	$\frac{(\partial_{\mu}h)(\partial_{\nu}h)}{v^2} \langle u^{\mu}u^{\nu} \rangle_2$	$\boxed{\frac{d_{P}^{2}}{2M_{P_{3}^{1}}^{2}} + \frac{\lambda_{1}^{hA~2}v^{2}}{M_{A_{3}^{1}}^{2}} + \frac{\widetilde{\lambda}_{1}^{hV~2}v^{2}}{M_{V_{3}^{1}}^{2}}}$
8	$\frac{(\partial_{\mu}h)(\partial^{\mu}h)(\partial_{\nu}h)(\partial^{\nu}h)}{v^4}$	0
9	$\frac{(\partial_{\mu}h)}{v} \langle f_{-}^{\mu\nu} u_{\nu} \rangle_{2}$	$-\frac{F_A\lambda_1^{hA}v}{M_{A_3^1}^2}-\frac{\widetilde{F}_V\widetilde{\lambda}_1^{hV}v}{M_{V_3^1}^2}$

✓ Experimental constraints [95% CL]:

	LEC		Data
0.89 <	κ_W	< 1.13	LHC[1]
-1.02 <	c_{2V}	< 2.71	LHC[2]
-0.004 <	\mathcal{F}_1	< 0.004	LEP via S[3]
-0.06 <	\mathcal{F}_3	< 0.20	LEP & LHC[4]
-0.0006 <	\mathcal{F}_4	< 0.0006	LHC[5]
-0.0010 < J	$F_4 + F$	$\frac{1}{5} < 0.0010$	LHC[5]

From one-loop considerations one would expect $F_i \approx 1/(4\pi^2) \approx 10^{-3}$.

The running is known***:

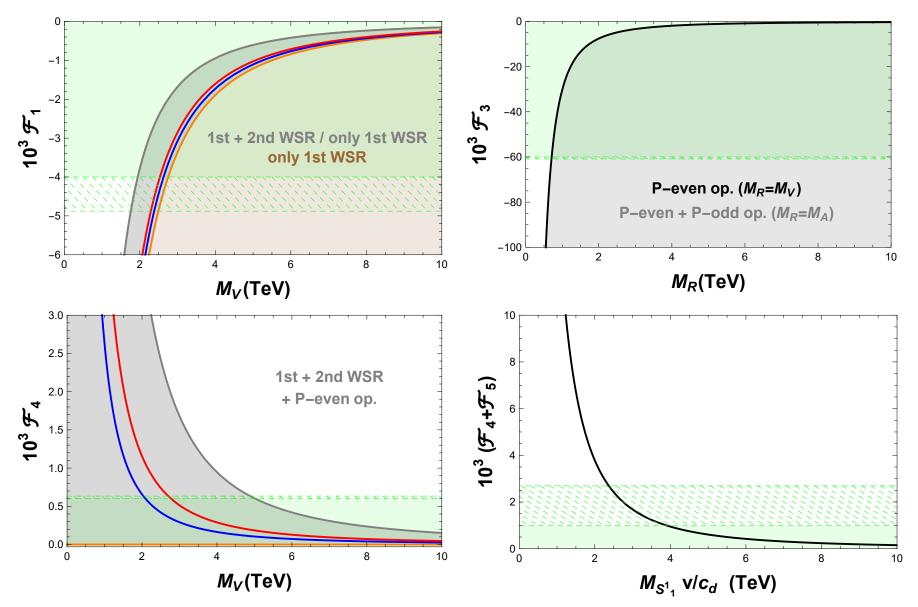
$$|F_i(\mu = M_R) - F_i(\mu = m_h)| \approx 10^{-3}$$

- [1] Blas, Eberhardt and Krause '18
- [2] ATLAS-CONF-2019-030
- [3] <u>PDG '18</u>
- [4] Da Silva et al. '19
- [**5**] <u>CMS '19</u>

- ** Pich, IR, Santos and Sanz-Cillero '17
- ** Krause, Pich, IR, Santos and Sanz-Cillero '19
- *** Guo, Ruiz-Femenía and Sanz-Cillero '15

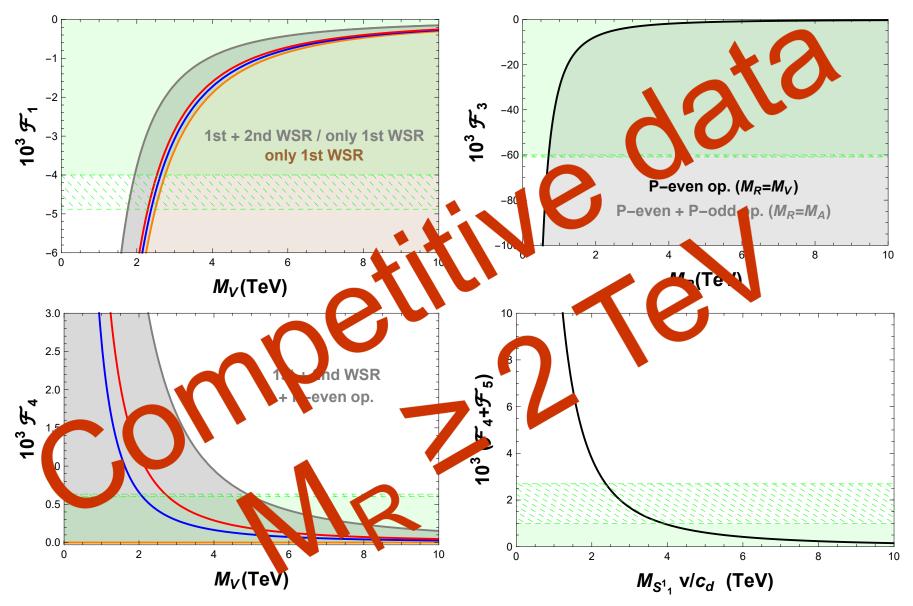
^{*} Pich, IR, Santos and Sanz-Cillero '16

^{*} Pich, IR and Sanz-Cillero '20



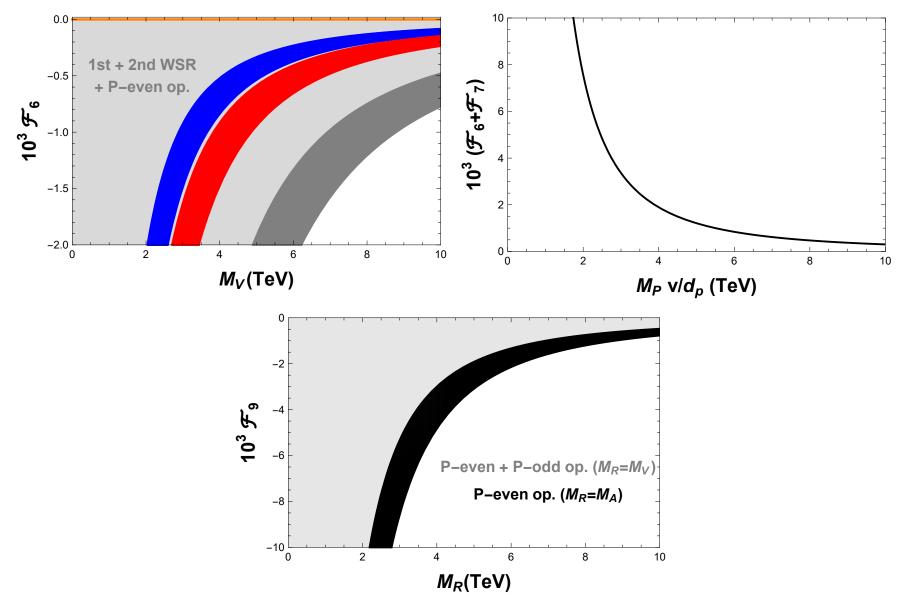
^{*} Pich, IR, Santos and Sanz-Cillero '16

^{*} Pich, IR and Sanz-Cillero '20



^{*} Pich, IR, Santos and Sanz-Cillero '16

^{*} Pich, IR and Sanz-Cillero '20



^{*} Pich, IR, Santos and Sanz-Cillero '16

^{*} Pich, IR and Sanz-Cillero '20

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- ✓ As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
 - ✓ Decoupling (linear) EFT: SMEFT
 - ✓ SM-Higgs and weakly coupled
 - ✓ Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
 - ✓ Non-SM Higgs and strongly coupled
 - ✓ Expansion in loops or chiral dimensions

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- ✓ As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
 - ✓ Decoupling (linear) EFT: SMEFT
 - ✓ SM-Higgs and weakly coupled
 - ✓ Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
 - ✓ Non-SM Higgs and strongly coupled
 - ✓ Expansion in loops or chiral dimensions

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- ✓ As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
 - ✓ Decoupling (linear) EFT: SMEFT
 - ✓ SM-Higgs and weakly coupled
 - ✓ Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
 - ✓ Non-SM Higgs and strongly coupled
 - Expansion in loops or chiral dimensions

- Similarities to ChSB of QCD -> ChPT and RChT
- Phenomenology
 - ✓ Estimation of the LECs by using resonance Lagrangians and short-distance constraints.

- ✓ Up to now all searches for New Physics have given negative results: Higgs couplings compatible with the SM and no new states. Therefore we can use EFTs because we have a mass gap.
- ✓ As a consequence of the mass gap, bottom-up EFTs are appropriate to search for BSM. Depending on the nature of the EWSB we have two possibilities:
 - ✓ Decoupling (linear) EFT: SMEET
 - ✓ SM-Higgs and weakly coupled
 - ✓ Expansion in canonical dimensions
 - ✓ Non-decoupling (non-linear) EFT: EWET (HEFT or EWChL)
 - ✓ Non-SM Higgs and strongly coupled
 - Expansion in loops or chiral dimensions

- Similarities to ChSB of QCD -> ChPT and RChT
- Phenomenology
 - ✓ Estimation of the LECs by using resonance Lagrangians and short-distance constraints.

Experimental LHC constraints start to be competitive.

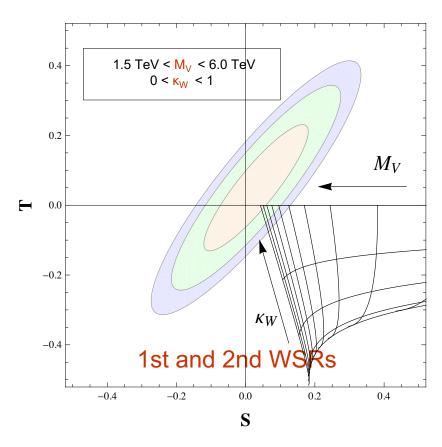
Room for these BSM scenarios and $M_R \ge 2$ TeV.

- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone and Higgs-Goldstone form factors, Weinberg Sum Rules

^{*} Pich, IR and Sanz-Cillero '12 '13 '14

^{**} Peskin and Takeuchi '92

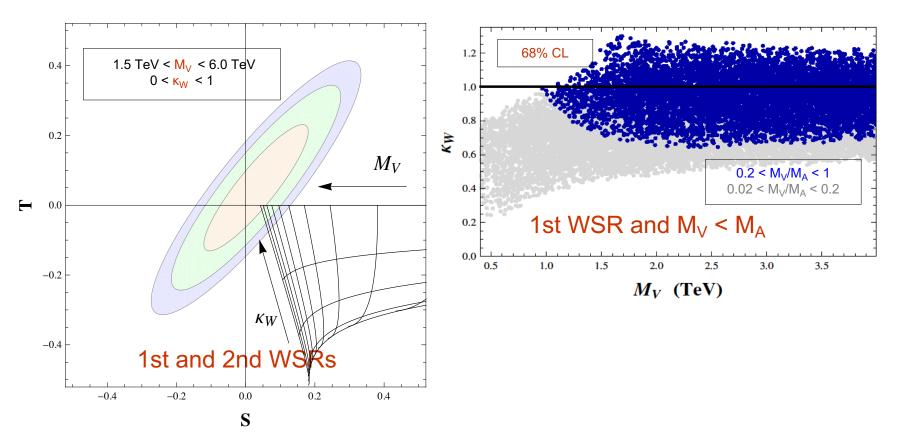
- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone and Higgs-Goldstone form factors, Weinberg Sum Rules



^{*} Pich, IR and Sanz-Cillero '12 '13 '14

^{**} Peskin and Takeuchi '92

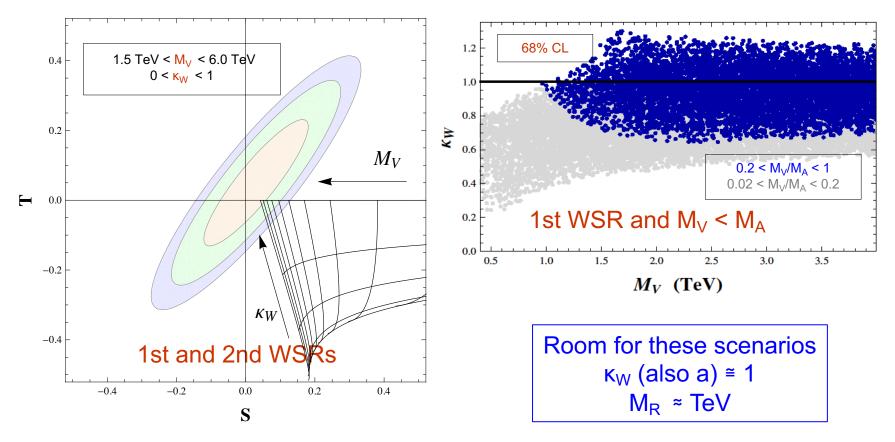
- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone and Higgs-Goldstone form factors, Weinberg Sum Rules



^{*} Pich, IR and Sanz-Cillero '12 '13 '14

^{**} Peskin and Takeuchi '92

- ✓ Oblique electroweak observables** (S and T)
- ✓ Dispersive relations for both S** and T*
- ✓ Short-distance constraints: two-Goldstone and Higgs-Goldstone form factors, Weinberg Sum Rules



^{*} Pich, IR and Sanz-Cillero '12 '13 '14

^{**} Peskin and Takeuchi '92

Phenomenology III: contact four-fermion operators*

- ✓ With light leptons and/or quarks
 - From dijet production

```
\Lambda \ge 21.8 TeV from ATLAS \Lambda \ge 18.6 TeV from CMS \Lambda \ge 16.2 TeV from LEP
```

From dilepton production

```
\Lambda \ge 26.3 TeV from ATLAS \Lambda \ge 19.0 TeV from CMS \Lambda \ge 24.6 TeV from LEP
```

- Including top and bottom quarks
 - From high-energy collider studies

```
\Lambda \ge 1.5 TeV from multi-top production at LHC and Tevatron \Lambda \ge 2.3 TeV from t and t\bar{t} production at LHC and Tevatron \Lambda \ge 4.7 TeV drom dilepton production at LHC
```

From low-energy studies

```
\Lambda \ge 14.5 \text{ TeV from}_{B_s} - \bar{B_s} \text{ mixing}
\Lambda \ge 3.3 \text{ TeV from semileptonic B decays}
```

^{*} See references in Krause, Pich, IR, Santos and Sanz-Cillero '19

Phenomenology III: contact four-fermion operators*

- ✓ With light leptons and/or quarks
 - From dijet production

```
\Lambda \ge 21.8 TeV from ATLAS \Lambda \ge 18.6 TeV from CMS \Lambda \ge 16.2 TeV from LEP
```

From dilepton production

```
\Lambda \ge 26.3 TeV from ATLAS \Lambda \ge 19.0 TeV from CMS \Lambda \ge 24.6 TeV from LEP
```

- ✓ Including top and bottom quarks
 - From high-energy collider studies

```
\Lambda \ge 1.5 TeV from multitop production at LHC and Tevatron \Lambda \ge 2.3 TeV from t and tt production at LHC and Tevatron \Lambda \ge 4.7 TeV drom dilepton production at LHC
```

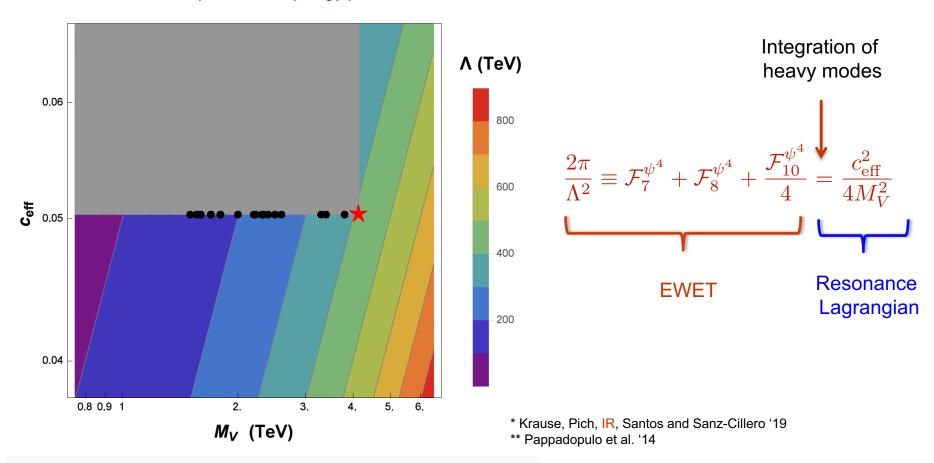
From low-energy studies

```
\Lambda \ge 14.5 \text{ TeV from}_{B_s} - \bar{B_s} \text{ mixing}
\Lambda \ge 3.3 \text{ TeV from semileptonic B decays}
```


^{*} See references in Krause, Pich, IR, Santos and Sanz-Cillero '19

Phenomenology IV: HVT diboson searches*

- ✓ Our model-independent approach can be related to the popular Heavy Vector Triplet simplified model (HVT)**.
- ✓ LHC diboson production experimental analysis (ATLAS and CMS).
- ✓ Exclusion in the (mass, coupling) plane and the scale ∧



Proca vs. antisymmetric formalism*

- ✓ By using path integral and changes of variables both formalisms are proven to be equivalent:
 - ✓ A set of relations between resonance parameters emerges.
 - \checkmark The couplings of the non-resonant operators are different: $\mathcal{L}_{\mathrm{non-R}}^{(P)} \neq \mathcal{L}_{\mathrm{non-R}}^{(A)}$

^{*} Ecker et al. '89

^{*} Bijnens and Pallante '96

^{*} Kampf, Novotny and Trnka '07

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17

^{*} Krause, Pich, IR, Santos and Sanz-Cillero '19

Proca vs. antisymmetric formalism*

- By using path integral and changes of variables both formalisms are proven to be equivalent:
 - A set of relations between resonance parameters emerges.
 - The couplings of the non-resonant operators are different: $\mathcal{L}_{non-R}^{(P)} \neq \mathcal{L}_{non-R}^{(A)}$
- High-energy behaviour is fundamental:

$$\mathbb{F}_{\varphi\varphi}^{\mathcal{V}}(s) = \begin{cases}
1 + \frac{F_V G_V}{v^2} \frac{s}{M_V^2 - s} + \frac{\widetilde{F}_A \widetilde{G}_A}{v^2} \frac{s}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDA}} \frac{s}{v^2} \\
1 + \frac{f_{\hat{V}} g_{\hat{V}}}{v^2} \frac{s^2}{M_V^2 - s} + \frac{\widetilde{f}_{\hat{A}} \widetilde{g}_{\hat{A}}}{v^2} \frac{s^2}{M_A^2 - s} - 2\mathcal{F}_3^{\text{SDP}} \frac{s}{v^2}
\end{cases} (A)$$

$$\mathcal{F}_{3}^{\text{SDA}} = 0$$

$$\mathcal{F}_{3}^{\text{SDP}} = -\frac{f_{\hat{V}} g_{\hat{V}}}{2} - \frac{\widetilde{f}_{\hat{A}} \widetilde{g}_{\hat{A}}}{2}$$

^{*} Biinens and Pallante '96

^{*} Kampf, Novotny and Trnka '07

^{*} Pich, IR, Santos and Sanz-Cillero '16 '17