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 fingerprints of new physics on Higgs couplings

arXiv:1708.08912

Higgs couplings can reveal physics beyond the SM
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Higgs production in electron-positron collisions
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associated 
Higgs production

top quark Yukawa

Higgs boson 
self-coupling

WW & ZZ fusion

Higgs studies start at 250 GeV

for full set of Higgs measurements,
add collisions at ~500 & ~1000 GeV

detectors for full energy range
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International Linear Collider

collide electron & positron beams
CM energy : initial 250 GeV; upgrade to 1000+ GeV

longitudinally polarised beams [electron 80%; positron 30%]
 J. List, in Accelerator: Physics, Performance, and R&D for Future Facilities, 28/7

superconducting technology : reduced energy consumption

https://indico.cern.ch/event/868940/contributions/3815726/
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2000 fb-1 @ 250 GeV
4000 fb-1 @ 500 GeV
200 fb-1 @ 350 GeV

upgradable to 
1 TeV and above
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ILC interaction point shared by two detectors

two groups developing detector designs for ILC

SiD A. White, Detectors for Future Facilities, 29/7

ILD T. Tanabe, Detectors for Future Facilities, 31/7

https://indico.cern.ch/event/868940/contributions/3814064/
https://indico.cern.ch/event/868940/contributions/3814068/
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tracking for Higgs
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Higgs-strahlung 
key to measurements independent of Higgs decay

initial 4-momentum 
    well-known
nominal CM energy 
    + beam energy spread

[ <0.2% / beam ]

    + beamstrahlung 
energy loss

4-momentum of Z
measured by 
detector

→ infer recoiling system’s 4-momentum 

precision depends on:
- collision energy spectrum
- Z measurement precision

defines required momentum resolution
smearing due to Z momentum ~ smearing due to beam energy spread

dp
T
/p

T
 ~ few x 10-5 p

T
 @ high momentum 

Collision Energy [GeV]
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e+e- →  μ+μ- h 
[invisible h decay] 
@ 250 GeV 

peak area : 
total e+e- → Z H 

cross-section
→ independent of 

H decay

→ HZZ coupling 
  strength ~ 0.4%

peak position:
Higgs mass ~ 14 MeV

peak width:
→ drives precision

momentum resolution
⊕

beam energy spread

e+e-→μ+μ- H
@ILC250
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main tracking system

all-silicon tracking system
5 layers of strip sensors hybrid tracking system

Time Projection Chamber (TPC) 
+ silicon (SET, SIT, FTD) 

contrasting 
approaches

SET

TPC

both achieve
required 
performance

FTD SIT
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hadronic Higgs branching ratios
combine partial cross-sections

σ
ZH

 x BR ( H → bb, cc, gg )
with total σ

ZH 
measurement

→ absolute BR measurement

b- and c-jet tagging
displaced vertices and tracks
secondary leptons

H → bb                      H → cc                       H → gg

250 fb-1@250 GeV : δ σ
ZH

BR
bb

 ~ 1% ; δ σ
ZH

BR
cc

 ~ 8% ; δ σ
ZH

BR
gg 

~ 7%

arXiv:1207.0300, 1903.01629, 2003.01116 

Data
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vertex detector

low energy e+/- 
beamstrahlung 
background

constrained by 
strong detector 
solenoid 3.5~5 T

key aspects:

position resolution < 5 micron
→ sensor technologies 

close to IP   ~ 15 mm
→ machine backgrounds

low mass  < 0.3% X
0
/layer

→ support, infrastructure
e.g. 3 double-layer design

[+ forward disks]

beam 
pipe

1703.05737 
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calorimetry for Higgs
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majority of final states will have hadronic jets
hadronic final states dominate decays of W, Z, H, …

key figure of merit:
distinguish hadronic decays of W, Z (and H),
→ requires excellent Jet Energy Resolution

Particle Flow
tracker [excellent momentum resolution]

→ charged energy (~65%)
calorimeters 
→ used to measure only 

photon (~25%) and 
neutral hadron (~10%) energy

→ calorimeters must distinguish energy deposits from 
charged and neutral particles
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readout granularity

< 1 cm3 in ECAL

< 30 cm3 in HCAL

calorimeters both 
inside detector 
solenoid

to distinguish charged and neutral calorimeter deposits :
1. highly detailed calorimeter readout
2. sophisticated reconstruction algorithms
3. minimal material before calorimeters

W          Z

PandoraPFA
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Higgs decay to invisible final states
e.g. dark matter particles?

hadronic Z decays for maximum sensitivity 

arXiv:1909.07537, 2003.01116 
ILD-PHYS-PUB-2019-003

limit on additional invisible 
Higgs decay BR: ~0.3%

H → invisible
@ 10% BR

250 GeV 500 GeV
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summary of ILC detector requirements

charged track momentum resolution
dp

T
 / p

T
 ~ few x 10-5 p

T

→“recoil” H mass measurement

charged track impact parameter resolution
σ

d0
 ~ 5 μm
→ identification of b, c, and τ decays

hadronic jet energy resolution
σ

E
 / E ~ 3 → 5 % over wide energy range

→ exploitation of hadronic final states; 
distinguish W, Z, H

cover almost 4π solid angle
→ important for “missing momentum” searches
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The ILC and its detectors will make 
high precision measurements of the Higgs sector 

1 %

HL-LHC
 + ILC250
 + ILC500

...and point the way to physics 
beyond the Standard Model

arX
iv:19 03.016 29
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end

we invite you to join the ILC discussion session:

Friday, July 31
 7:00 am Pacific
 9:00 am Texas
 4:00 pm Hamburg
11:00 pm Tokyo

https://stanford.zoom.us/j/99671238654?pwd=M2V2RCtYbTFrVi9Ub01kckh3WFVoZz09

https://stanford.zoom.us/j/99671238654?pwd=M2V2RCtYbTFrVi9Ub01kckh3WFVoZz09
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backup
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e+e- → tth [tt → 6q, h → bb] 
@ 1 TeV

low mass 
minimise multiple scattering
resolution at low momentum 
Particle Flow

robust reconstruction
excellent efficiency in

high multiplicity events

in addition to excellent momentum resolution,
tracker should have



23arXiv:1908.11299v4
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CP violation in H→ τ+ τ-

correlations between tau spins

- hadronic & leptonic Z decays 
→ jet energy & tracker

- tau identification & 
spin reconstruction
→ vertex detector
→ calorimeter

@ILC250, measure CP odd/even mixing angle ψ
CP

 to ~4o 

h
125

 = cos ψ
CP

 hCPeven 

    + sin ψ
CP

 ACPodd

f  

f  

signal

background

arXiv:1804.01241
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CP violation in Higgs sector : HVV coupling

[ %/TeV ]–level 
sensitivity on 
a

Z
/Λ, b

Z
/Λ, b

Z 
/Λ

combination of e.g. 
250+500 GeV helps 
disentangle contributions 
thanks to momentum-
dependence

arXiv:1712.09772
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additional light scalars

search for additional light scalars,
produced via Higgs-strahlung

PoS(ICHEP2018)630, 

ILD-PHYS-PUB-2019-011

S
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top Yukawa coupling

Higgs self-interaction
→ shape of Higgs potential
→ EW phase transition

500/550 GeV opens direct access to 
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higgs self-coupling
indirect : loop corrections modify Higgs production x-sec,

in an energy dependent way

cross-section measurements at well-spaced energy points
provides some sensitivity to the self-coupling 

Eur. Phys. J. Special Topics 228, 261 (2019)
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at energies > 500 GeV, direct 
access to di-Higgs production

higgs boson self-coupling
cr
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triple-Higgs coupling / SM

triple-Higgs coupling / SM
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HL-LHC ⊕ ILC 250 →500→1000 GeV
direct approach : ~10~25 %
indirect approach : ~35~50 %

→ consistency test

direct

indirect
1000          250 GeV

1000              500 GeV
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Higgs mechanism intertwined with entire EW sector

improved measurements of W, Z, t are an essential
ingredients to more precisely constrain EWSB & Higgs

Z 
→ on-resonance @ 91 GeV
→ radiative returns at higher energies

W 
→ pair production @ 161+ GeV

top quark 
→ pair production @ 350+ GeV 

luminosities many orders of 
magnitude beyond LEP, SLC

+ significantly longer energy 
lever arm

CERN-ESU-004

G. Wilson, in “Top quark and electroweak physics”, 28/7

https://indico.cern.ch/event/868940/contributions/3816411/
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...

bunch train
1300 [2600] bunches

spacing 330 ns

...
199 [99] ms

<1 ms

ILC beam structure

OFF FE electronics

OFF data transfer

“power-pulsing” 

allows reduction, by factor ~100, of
→ in-detector electronics power
→ detector cooling requirements

less in-detector cooling & power infrastructure
→ more precise measurements
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