

Measurements of Differential Higgs Boson Production Cross Sections in the Leptonic WW Decay Mode with CMS

Sarah Freed on Behalf of the CMS Collaboration Rice University ICHEP 2020 Poster Session

Introduction

- What was studied?:
 - Higgs, decaying to two W bosons, in different flavor leptonic channel ($e^{\pm}\mu^{\mp}\nu\bar{\nu}$ final state)
 - Differential cross section measurement with respect to:
 - Transverse momentum of Higgs (p_T^H)
 - Jet multiplicity (*N_{jet}*)
- Motivation:
 - Higgs decay to WW has a large branching fraction, making it ideal for:
 - Precision measurement of the cross section
 - Measurements with subleading production modes
 - Different flavor leptonic channel is cleanest
 - The final state does not require Higgs to be boosted, thus allowing use of full range of p_T^H

Method

- Number of signal events from each generator level bin extracted from a fit of 2D (m^{ll}, m_T^H) distributions
 - m^{ll} and m_T^H discriminate well against background processes
- The fit includes the unfolding, regularization and signal extraction, which are all done simultaneously
 - Regularization not needed for N_{jet} part of analysis
- Cross sections are determined from the fit to all bins and categories of both the signal and two control regions
 - This gives the signal strength modifiers, which in this case are taken to be equivalent to the scale factors from the fit
 - Control regions for $t\bar{t}$ pair production and Drell-Yan τ pair production

 $\mu_i (signal strength modifiers) = \frac{\sigma_i^{obs}}{\sigma_i^{SM}}$

Leading uncertainties: Non-prompt background, WW background, Residual p_T^{miss} uncertainties, Lepton ID efficiency scale factors