
Ø Using the output of the low-level-taggers, 
jets are classified with an algorithm 
based on a deep neural network (DNN)

Ø Improvements of the high jet pT
performance by extending the range of 
the jet pT spectrum of the training 
sample

Ø The DNN output probabilities (pb, pc and 
plight) are combined to a b-tagging 
discriminant (fc: effective c-jet fraction in 
background training sample):
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Many analyses in ATLAS, like top quark and Higgs measurements and searches for new physics, rely on the identification of jets containing b-
hadrons (b-jets) at high efficiency while rejecting more than 99% of non-b-jets. These algorithms, called b-taggers, exploit the distinct decay 
properties of the b-hadrons. Using different machine learning approaches, like Boosted Decision trees, deep neural networks, and recently also 
Recurrent Neural Networks (RNNIP) and deep sets, powerful discriminators are built to discriminate b-jets from c- and light jets. For the first time, 
the algorithms have been trained on jets reconstructed using information from the ATLAS tracker and calorimeter (“particle flow jets”). We measure 
the tagging rates in ATLAS collision data from the full Run 2 of the LHC (2015-2018) and correct the MC simulations to reflect the measured rates.

Method
Ø Pure sample of b-jets is selected by targeting the dileptonic 

decay of ttbar events
Ø Main features of the event selection:

• == 1 electron & == 1 muon
• Exactly 2 jets

The performance of the b-tagging algorithms is measured in data and MC and MC-to-data correction factors are 
derived. These factors are measured in samples enriched in either b, charm or light jets. The efficiency 
measurements are provided as functions of the jet pT (transverse momentum) as the tagger performance depends on 
the jet pT. Correction factors (Scale Factors) are measured for each single-cut operating point defined by a cut on 
the discriminating variable corresponding to an average b-jet identification efficiency of 85%, 77%, 70% or 60% in 
simulated ttbar events. The scale factors are smoothed as a function of the jet pT and differences in efficiencies 
between MC generators are taken into account by adding an additional correction factor [ATL-PHYS-PUB-2020-009].  

Ø ATLAS analyses profit from taggers with improved performance
Ø B-tag, charm and light mistag efficiencies are measured in 

data and MC, results are mostly consistent and MC-to-data 
correction factors are close to 1

Ø Uncertainties at percent level for b-tagging efficiency and at 10-
20% for light mistag rate

Ø Constant work on improvements of taggers 
Ø Charm-jet tagging also possible using the b-tagging algorithms 

with the same training, with slight modifications to the tagging 
discriminant definition

Ø Development of calibration methods in progress to extend 
efficiency measurements to other phase space like large jet pT

Combine output 
of « low-level » 
taggers in Deep
neural network

Improved performance of ATLAS b-tagging 
algorithm for Run 2 analyses with dedicated 
training on particle flow jets
Ø Deep Neural network based algorithm 

(“DL1”) outperforms the “MV2” algorithm 
based on boosted decision trees

Ø RNNIP improves further the performance 
(“DL1r”)

Larger charm & 
light jet rejection 
for the same b-

tagging efficiency

x1.5

@70% b-efficiency: 
charm jet rejection 1:10!

x2

@70% b-efficiency: light 
jet rejection 1:500!

The ATLAS b-tagging algorithms
Ø Exploit b-hadron properties: long lifetime, high mass and high decay multiplicity
Ø Two complementary approaches in low-level taggers: exploit individual 

properties of charged particles or reconstruction of displaced vertices
Ø New: RNNIP, a recurrent neural network, exploits correlations between track 

impact parameters for tracks of b-hadron decays
Ø Improvements in training speed and algorithm performance observed if using 

deep sets (DIPS) instead of RNNIP [ATL-PHYS-PUB-2020-014]

B-jet efficiency calibration: 
Dileptonic ttbar PDF method

Charm jet mistag calibration: 
Single lepton ttbar method

Light jet mistag calibration: 
Negative tag method
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Smoothing procedureHigh-pT extrapolation Conclusions & Outlook

Ø Calibration is extracted using 
the two jets in the event

Ø Constrain remaining non-b-jet 
background using a 
simultaneous template fit to 
data in signal and control 
regions

Ø Reduces uncertainty to 
percent level
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Results
Ø MC-to-data correction factors 

consistent with 1
Ø Uncertainties at percent 

level (1-2%)
Ø Dominant uncertainties from 

ttbar modelling, jet energy 
scale and resolution
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Jets from W-
decay

Method
Ø Select sample of ttbar events in the 

lepton+jets decay
Ø Exploit large branching ratio of W->cX

decay to create sample enriched in 
charm jets

Ø Main features of the event selection:
Ø ==1 electron OR muon
Ø Exactly 4 jets

Ø Perform measurement on jets 
assigned to the hadronically 
decaying W-boson

Ø Use kinematic likelihood 
fitter to assign jets to ttbar 
decay products

Ø Extract charm mistag efficiency 
in data using a combined 
likelihood fit

Results
Ø MC-to-data correction factors 

largely compatible with 1
Ø Uncertainties at the level of a 

few percent
Ø Dominant uncertainty from ttbar 

modelling

Method
Ø Difficult to create light flavor dominated 

sample due to high light jet rejection 
of b-tagger (1:50 – 1:1000)

Ø Solution: measure mistag efficiency of 
a modified tagger

Ø Make use of symmetry of signed 
impact parameter distribution for 
light jets and strong asymmetry 
for b & charm jets

Ø Reduce tagging rate of b-jets
Ø Light jet response unchanged

Modified 
Tagger

Original 
Tagger

Calibration

Extrapolate back using MC: Additional 
uncertainty to cover the difference in 

calibration (« extrapolation 
uncertainty »)

Ø New method developed recently
Ø Calibration using leading jet in Z(->ll)+jets events
Ø 2D combined fit reduces uncertainty by constraining 

non-light jet contribution
Results
Ø MC-to-data correction factors 

largely compatible with 1
Ø Uncertainties at the level of 

10-20%
Ø Dominant uncertainty from 

extrapolation, reduced by 
better inner detector 
simulation

Ø Data statistics insufficient for jet 
pT>400GeV to extract efficiency

Ø Extend central value of b-
efficiency for pT(jet) >400GeV

Ø Derive additional systematics 
using MC for pT(jet)>400 GeV: 
Extrapolation uncertainties due to 
physics and detector modeling are 
added to measured uncertainties

Ø Improved method, simulations and 
use of RNNIP reduces uncertainties

Measured in data Extrapolated
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Ø Smooth calibration factor 
results and uncertainties with a 
non-parametric regression 
technique

Ø Remove discontinuities at bin 
boundaries due to statistical 
fluctuations

Ø Improvements due to more 
rigorous approach to optimize 
smoothing parameters

optimal
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ATLAS-CONF-2018-001

Decay length

Properties of tracks from displaced vertices

Track impact parameters 
[+their correlation]

B-hadron Primary vertex
Secondary/Displaced vertices 

reconstruction and vertex properties

Jet axis

Mismodelling of training input variables causes 
differences in performance in MC w.r.t. data.
Ø Efficiency scale factors, defined as the ratio 

between data and MC performance, for b-tagging 
and charm and light mistag rates are necessary

Ø Scale factors close to 1 are desirable and show 
that the algorithm and its inputs are well 
understood in simulation ATL-PHYS-PUB-2017-013

Calibration of the b-tagging algorithms
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