Electron Yukawa from resonant s-channel Higgs production at FCC-ee

ICHEP-2020

Prague/Virtual, July-August 2020

Andres Poldaru (LMU, CERN)

David d'Enterria (CERN) G. Wojcik (SLAC, CERN)

e Yukawa via s-channel $e^+e^- \rightarrow H$ production

- Higgs decay to e^+e^- is unobservable: BR(H $\rightarrow e^+e^-$) $\propto m_e^{-2} \approx 5 \cdot 10^{-9}$
- Resonant Higgs production considered so far only for muon collider: $\sigma(\mu\mu\rightarrow H)\approx 70$ pb. Tiny κ_e Yukawa coupling \Rightarrow Tiny $\sigma(ee\rightarrow H)$:

2/4

$$\sigma(\,{\rm e^+}\,{\rm e^-}\!\!\to H\,) = \frac{4\pi\Gamma_H^2 Br(H\,\to\,{\rm e^+}\,{\rm e^-})}{\left(\hat{s}-M_H^2\right)^2+\Gamma_H^2 M_H^2} = \text{1.64 fb}$$

ISR & beam energy spread further reduce resonant e⁺e⁻ → H cross section:

$$\sigma$$
 (ee \rightarrow H) = 290 ab ($\delta\sqrt{s} \approx \Gamma_{H}$ = 4.2 MeV)

Can we exploit the huge luminosities expected at FCC-ee to carry out the measurement?

IFF we can monochromatize the beams to reach $\delta\sqrt{s}\approx 4$ MeV (natural Higgs width), and know m_H within few MeV, FCC-ee running at H pole mass would produce 300 Higgs bosons per 1 ab⁻¹.

Signal & backgrounds simulation

■ PYTHIA8 e⁺e⁻ at $\sqrt{s} = m_H = 125$ GeV to generate 10 final-states for Higgs signal plus backgrounds (s-channel Z/γ^* , plus all t-channels):

SIGNAL

BACKGROUNDS (10²–10⁸ larger, before cuts)

■ Very-rare counting experiment. Most significant channel $H \rightarrow WW^* \rightarrow lvjj$:

```
\begin{split} &E_{j1,j2} < 52,45 \text{ GeV} &\leftarrow \text{ Kills } e^+e^-\rightarrow q\bar{q} \\ &m_{w(lv)} > 12 \text{ GeV/c}^2 &\leftarrow \text{ Kills } e^+e^-\rightarrow q\bar{q} \\ &E_{lepton} > 10 \text{ GeV} &\leftarrow \text{ Kills } e^+e^-\rightarrow q\bar{q} \\ &\text{ME} > 20 \text{ GeV} &\leftarrow \text{ Kills } e^+e^-\rightarrow q\bar{q} \\ &m_{ME} < 3 \text{ GeV/c}^2 &\leftarrow \text{ Kills } e^+e^-\rightarrow \tau\tau \\ &\text{BDT MVA} \leftarrow \text{ Kills } e^+e^-\rightarrow WW^* \text{ continuum} \\ &(exploits opposite $W^{\pm}$ polarizations in $H$ decay) \end{split}
```

qq:
$$\sigma = 22 \text{ pb} \Rightarrow \sigma(\text{after}) = 4 \text{ ab}$$

 $\tau \tau$: $\sigma = 1 \text{ pb} \Rightarrow \sigma(\text{after}) = 2.6 \text{ ab}$
WW*: $\sigma = 16.3 \text{ fb} \Rightarrow \sigma(\text{after}) = 2.7 \text{ fb}$
H(WW*): $\sigma = 23 \text{ ab} \Rightarrow \sigma(\text{after}) = 8 \text{ ab}$

For L_{int} =10 ab⁻¹ S/ \sqrt{B} =80/ $\sqrt{27000} \approx 0.5$ Significance ≈ 0.5

e[±] Yukawa coupling at FCC-ee(125)

Counting experiment combining signal+backgds in 10 Higgs decay channels:

Preliminary upper limits on electron Yukawa κ_e coupling expected at SM-level

Limits on κ_e are $\times 100$ ($\times 30$) better than at HL-LHC (FCC-hh).

Unique opportunity to constrain κ_{a} Yukawa!

Monochromatization working points:

$$\delta\sqrt{s} = 6$$
 MeV, $L_{int} = 3$ ab⁻¹ (baseline)
 $\delta\sqrt{s} = 10$ MeV, $L_{int} = 7$ ab⁻¹ (optimized)

3σ evidence of ee → H would require 4 exps. running ~2 years at Higgs pole

N.B.: Upper limits in this plot derived with a more optimistic working point (work in progress)