

Measuring luminosity with track counting in the ATLAS experiment

Paul Moder, on behalf of the ATLAS Collaboration

Introduction

What is Track-Counting?

 Uses the average number of charged tracks of randomly triggered events in a dedicated event stream to measure the luminosity

$$\mathcal{L}_{inst} \sim n_b \frac{\mu_{vis} f_r}{\sigma_{vis}} \quad \mu_{vis} = \frac{N_{Tracks}}{N_{Events}}$$

- Which tracks are counted?
 - Selections based on track properties
 - → Study the stability of track-counting
 - μ_{vis} of the different track-counting selections calibrated in a special LHC fill:
 - $\rightarrow \langle \mu \rangle \sim$ 0.5, isolated bunches, no crossing-angle
 - → Extrapolate to physics regime

p _⊤ >900MeV, Tight Primary	2016 selection	2017 selection	2017+Si hit selection
Allowed pixel holes	=0	≤1	≤1 +1 add. silicon hit
Impact parameter	$ d_0/\sigma_{d_0} $ <7	$ d_0/\sigma_{d_0} $ <7	$ d_0/\sigma_{d_0} $ <7
η	η <2.5	η <1.0	η <1.0

Investigated track-counting uncertainties

- The different track selections were studied under different LHC configurations
- 1) µ dependence
 - \rightarrow ~ 1% shift between low and high $\langle \mu \rangle$
 - → Partially corrected by applying efficiency corrections based on $Z \rightarrow \mu \mu$ events (overcorrected by ~ 0.4%)

- 2) Bunch structure dependence
- \rightarrow ~ 1% shift between isolated bunches and bunch trains at high $\langle \mu \rangle$

Bunch Structure Dependence – High $\langle \mu \rangle$

- Dependence on position along bunch string
- Similar behaviour
 between isolated
 bunches and bunches
 that are first in train
- Different behaviour for bunches that are first in subtrain

- Dependence on bunch position in train
- Linear decrease in ratio for nearly 20 bunch positions inside train until plateau is reached

Conclusion

- → Track counting luminosity measurement stable within 1.4%
- → Two effects observed:
 - 1) ~1% shift between low and high $\langle \mu \rangle$ \rightarrow Partially corrected by applying corrections based on $Z \rightarrow \mu \mu$ events
 - 2) ~1% shift between isolated bunches and bunch trains at high $\langle \mu \rangle$ Investigating possible corrections