
Higgs measurements at the FCC-hh

Michele Selvaggi
CERN

The FCC project

Within the FCC collaboration (CERN as host lab), 5 main accelerator facilities have been studied:

- pp-collider (FCC-hh)
 - defines infrastructure requirements
 - $16T \rightarrow 100 \text{ TeV}$ in 100 km tunnel
- ee-collider (FCC-ee):
 - as a (potential) first step
- ep collider (FCC-eh)
- HE-LHC:
 - 27 TeV (16T magnets in LHC tunnel)
- Low E FCC-hh
 - 100 km 6T 37 TeV

CERN-FCC-PHYS-2019-0001

CDRs and European Strategy documents have been made public in Jan. 2019 https://fcc-cdr.web.cern.ch/

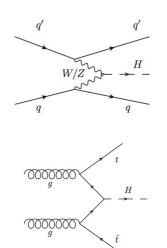
Why measuring Higgs @FCC-hh?

- 100 TeV provides unique and complementary measurements to e+e- colliders:
 - Higgs self-coupling
 - top Yukawa
 - Higgs → invisible
 - rare decays (BR(μμ), BR(Ζγ), ratios, ..) measurements will be statistically limited at FCC-ee

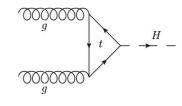
• Assuming, we know production xsec and luminosity, at pp colliders we measure BR(i) = Γ_i / Γ_H

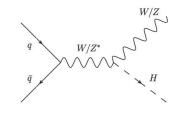
Need to improve

	HL-LHC	FCC-ee
δΓ _H / Γ _H (%)	SM	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg_{Hgg} / g_{Hgg} (%)	2.5 (gg->H)	1.01
δднττ / днττ (%)	1.9	0.74
δ д η μμ / д η μμ (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δднι / днι (%)	3.4	_
δднzγ / днzγ (%)	9.8	_
б дннн / дннн (%)	50	40
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	< 1%


• By performing measurements of ratios of couplings, (or BRs), FCC-ee allows to "convert" relative measurements into absolute via HZZ

$$BR(H \rightarrow XX) / BR(H \rightarrow ZZ) \approx g_X^2 / g_Z^2$$


Why Higgs at FCC-hh?


- Large Higgs production rates (x20-60 cross-section wrt to LHC):
 - · access (very) rare decay modes (eg. 2nd gen,), complementary to ee colliders
 - · push to %-level Higgs self-coupling measurement
- Large dynamic range for H production (in p_T^H , m(H+X), ...):
 - · new opportunities for reduction of syst. uncertainties (TH and EXP)
 - develop indirect sensitivity to BSM effects at large Q^2 , complementary to that emerging from precision studies (e.g. decay BRs) at $Q\sim m_H$
- High energy reach:
 - direct probes of BSM extensions of Higgs sector (e.g. SUSY)
 - Higgs decays of heavy resonances
 - · Higgs probes of the nature of EW phase transition (strong 1st order? crossover?)

Single Higgs production @FCC-hh

	σ(13 TeV)	σ(100 TeV)	$\sigma(100)/\sigma(13)$
ggH (N³LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

Expected improvement at FCC-hh:

- · 20 billion Higgses produced at FCC-hh
- factor 10-50 in cross sections (and Lx10)
- reduction of a factor 10-20 in statistical uncertainties

$N_{100} = \sigma_{100 TeV} \times 20 ab^-$
$N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$
$N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

	N_{100}	N_{100}/N_{8}	N_{100}/N_{14}
$gg \to H$	16×10^{9}	4×10^4	110
VBF	1.6×10^{9}	5×10^{4}	120
WH	3.2×10^{8}	2×10^{4}	65
ZH	2.2×10^{8}	3×10^{4}	85
$t ar{t} H$	7.6×10^{8}	3×10^5	420

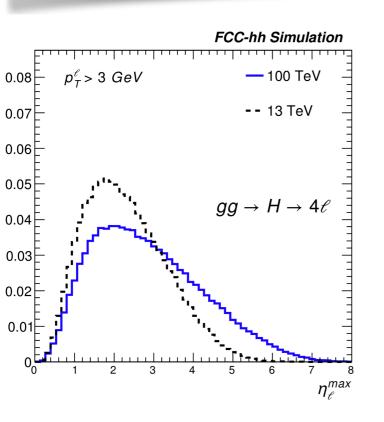
1/100 1/10

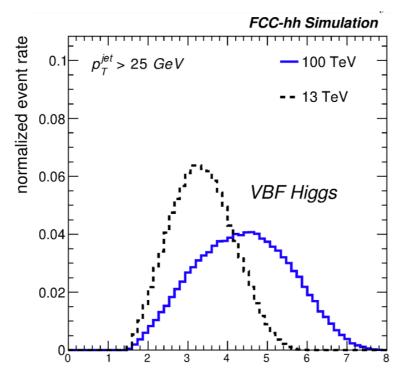
Factor: 1/100

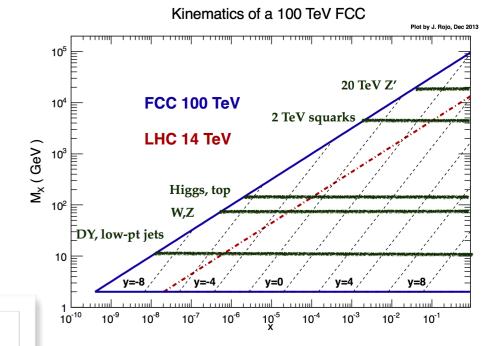
reduction in stat. unc.

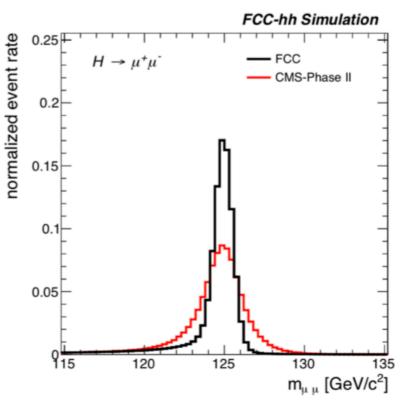
Large statistics will allow:

- for % level precision in statistically limited rare channels $(\mu\mu, Z\gamma)$
- in systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs pt) with :
 - higher S/B
 - smaller (relative) impact of systematic uncertainties


Higgs @threshold

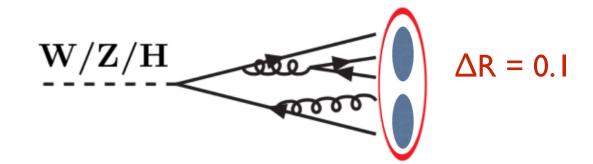

SM Physics produced at threshold is more forward @100TeV


→ in order to maintain sensitivity need large rapidity (with tracking) and low p_T coverage


Goals:

- Precision spectroscopy and calorimetry up to $|\eta| < 4$
- Tracking and calorimetry up to $|\eta| < 6$

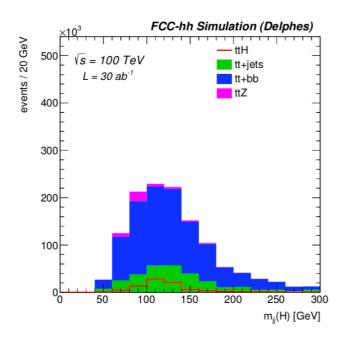


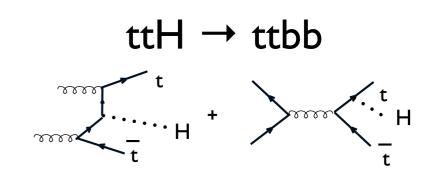

low p_T muons → resolution dominated by MS

Boosted Higgs at large pt @100 TeV

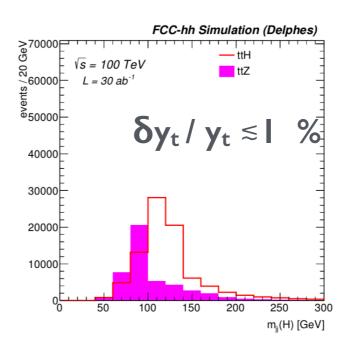
10⁵ $\sigma(p_{T,H}>p_{T,min})$ (fb) Solid: exact mtop dependence Dashes: EFT 10^{4} 10³ $N(p_T > p_{T, min})$ 10^{1} 1000 $p_{\text{T,min}}$ (GeV)

- Huge rates at large pt:
 - > 106 Higgs produced with p_T > 1 TeV
 - Higher probability to produce large p_T Higgs from ttH/VBF/VH at large
 - Even rare decay modes can be accessed at large pt
- Opportunity to measure the Higgs in a new dynamical regime
 - Higgs p_T spectrum highly sensitive to new physics.
 - Reduce backgrounds, a smaller systematic uncertainties

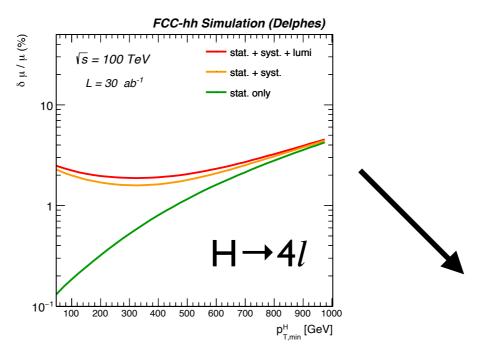

p_π (GeV)


1500

- highly granular sub-detectors:
 - Tracker pixel: 10 μ m @ 2cm $\rightarrow \sigma_{\eta \times \phi} \approx 5$ mrad
 - Calorimeters: 2 cm @ 2m $\rightarrow \sigma_{nx\phi} \approx 10 \text{ mrad}$
- good energy/p_T resolution at large p_T:
 - $\sigma_p / p = 2\%$ @ I TeV


Top Yukawa (production)

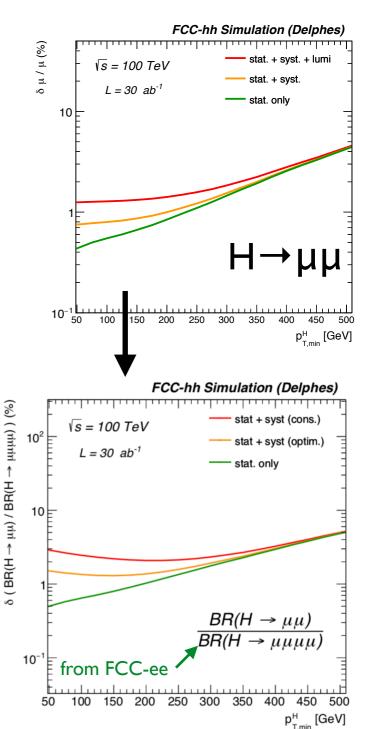
- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- · (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and K_b known to 1% (from FCC-ee),
 - \rightarrow measure y_t to 1%



To do:

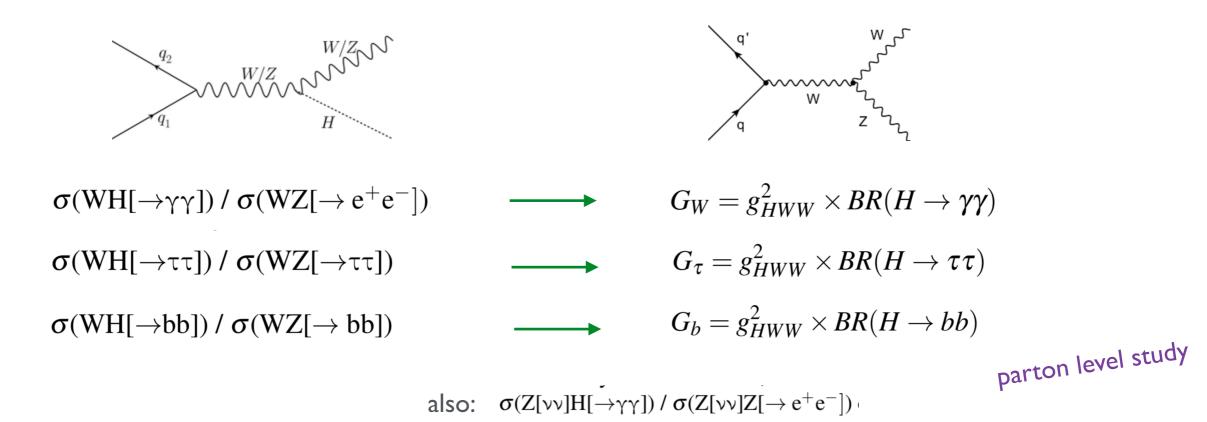
- · Further assess systematics related to ttbb background modelling
- Explore use ttH / ttZ in tt $\tau\tau$ decay mode

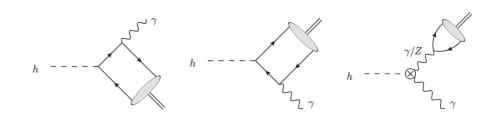
Higgs decays (rare)


- study sensitivity as a function of minimum $p_T(H)$ requirement in the $\gamma\gamma$, ZZ(4I), $\mu\mu$ and $Z(II)\gamma$ channels
- low p_T(H): large statistics and high syst. unc.
- large p_T(H): small statistics and small syst. unc.
- O(1-2%) precision on BR achievable up to very high p_T (means 0.5-1% on the couplings)
- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - object efficiencies
 - production cross-section (theory)

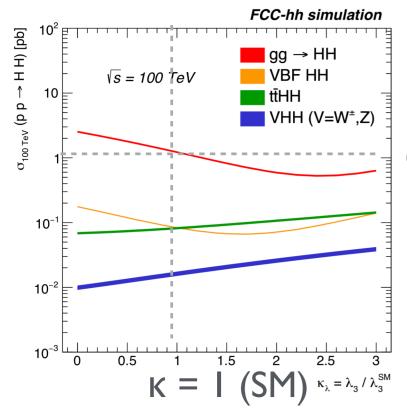
- 1% lumi + theory uncertainty
- p_T dependent object efficiency:

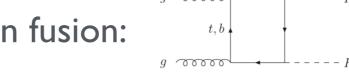
•
$$\delta \epsilon (e/\gamma) = 0.5 (1)\%$$
 at $p_T \rightarrow \infty$

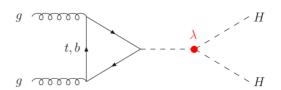

•
$$\delta \epsilon(\mu) = 0.25 (0.5)\%$$
 at $p_T \rightarrow \infty$


To do:

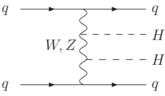
• Exploit specific signatures of various production modes (categorize)

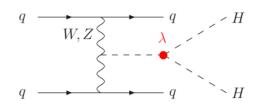

Higgs decays


- Boosted Higgs studies:
 - in hadronic channels (H→bb/cc/WW)
 - exclusive decays $H \rightarrow (J/\psi) \rho / \omega / \gamma$ (resolved/boosted)

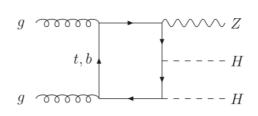


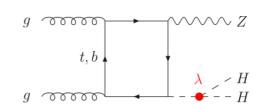
Higgs pair production at the FCC-hh


gluon fusion:

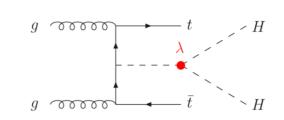


 $\sigma \approx 1 \text{ pb}$

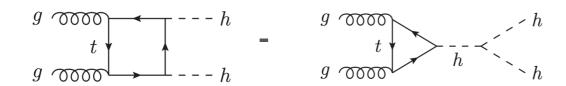




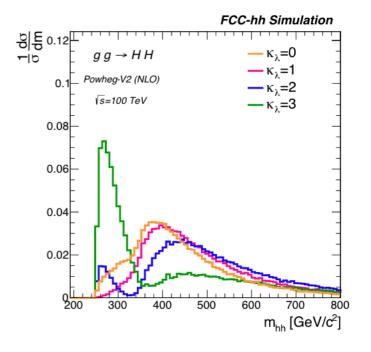
≈ 15 %

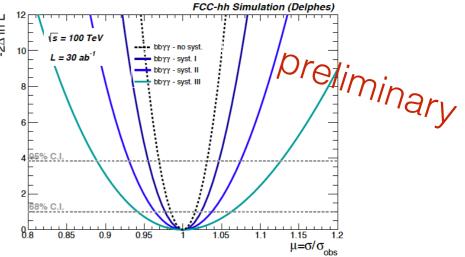


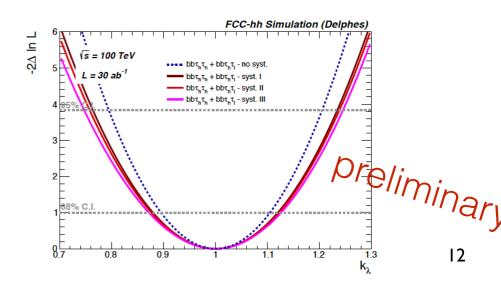
Expected precision:

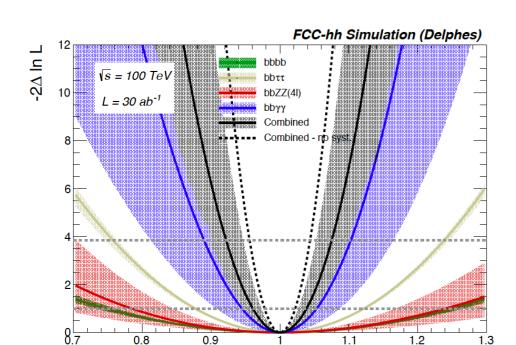

$$\delta_{\kappa_{\lambda}} = \frac{\delta_{\mu}}{\frac{d\mu}{d\kappa_{\lambda}}\Big|_{SM}}$$

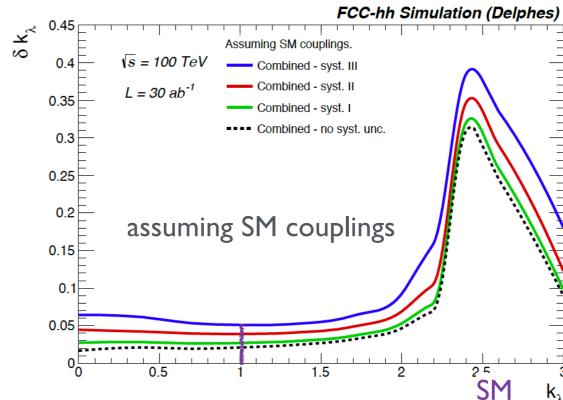
where:
$$\kappa_{\lambda} = \lambda_3/\lambda$$

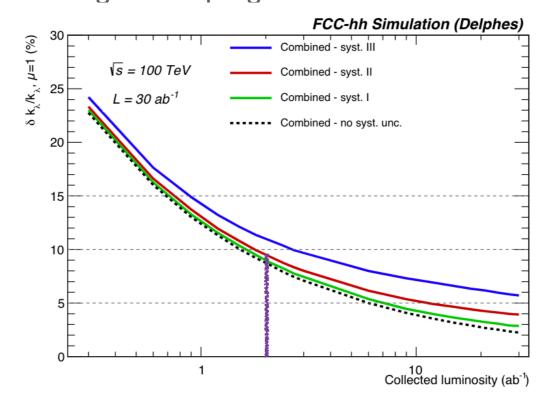


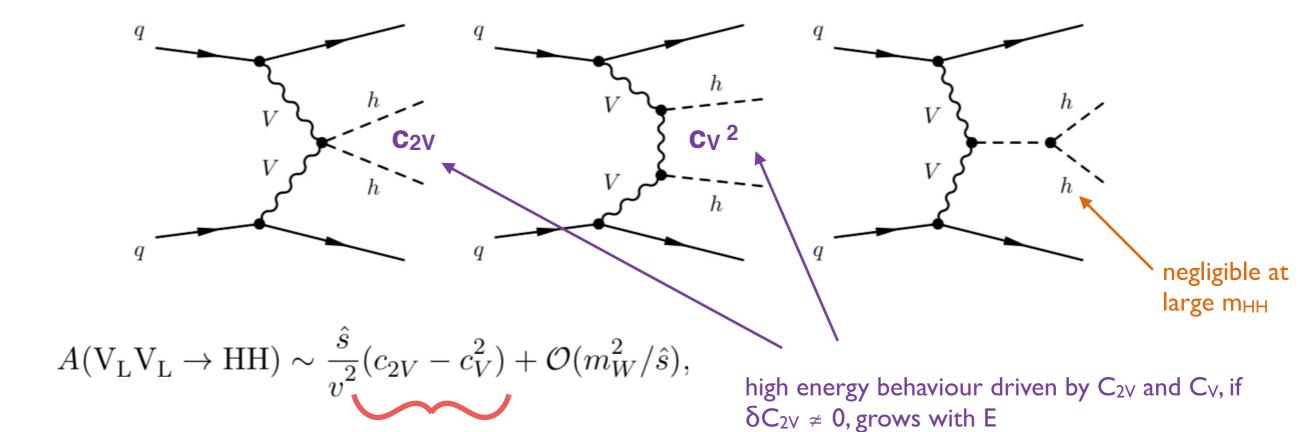

G. Ortona, MS, MLM [2004.03505]

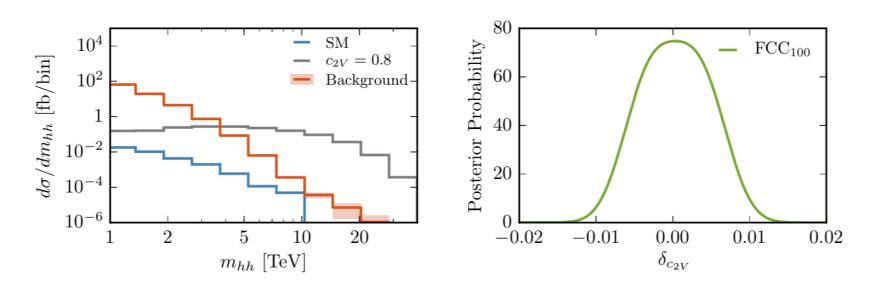

Double Higgs and self-coupling


- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta k_{\lambda} / k_{\lambda} \approx 50\%$
- Expect large improvement at FCC-hh:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40 \text{ (and Lx 10)}$
 - x400 in event yields and x20 in precision
- main channels studied (using kin information in BDT):
 - bbyy ($\delta k_{\lambda} / k_{\lambda} \sim 3-8\%$)
 - $bb\tau\tau$ ($\delta k_{\lambda}/k_{\lambda} \sim 12\%$)
 - bbZZ(4l) ($\delta k_{\lambda} / k_{\lambda} \sim 15\%$)
 - bbbb ($\delta k_{\lambda} / k_{\lambda} \sim 22\%$)




Higgs self-coupling (combination)


To do: study in the context of a global EFT fit (here K_{λ} fit)



Can reach 10% precision with 2 ab -1

~ 2 yrs FCC-hh

$W_LW_L \rightarrow HH$

With c_V from FCC-ee, $\delta c_{2V} < 1\%$

0 in the SM

Conclusions & outlook

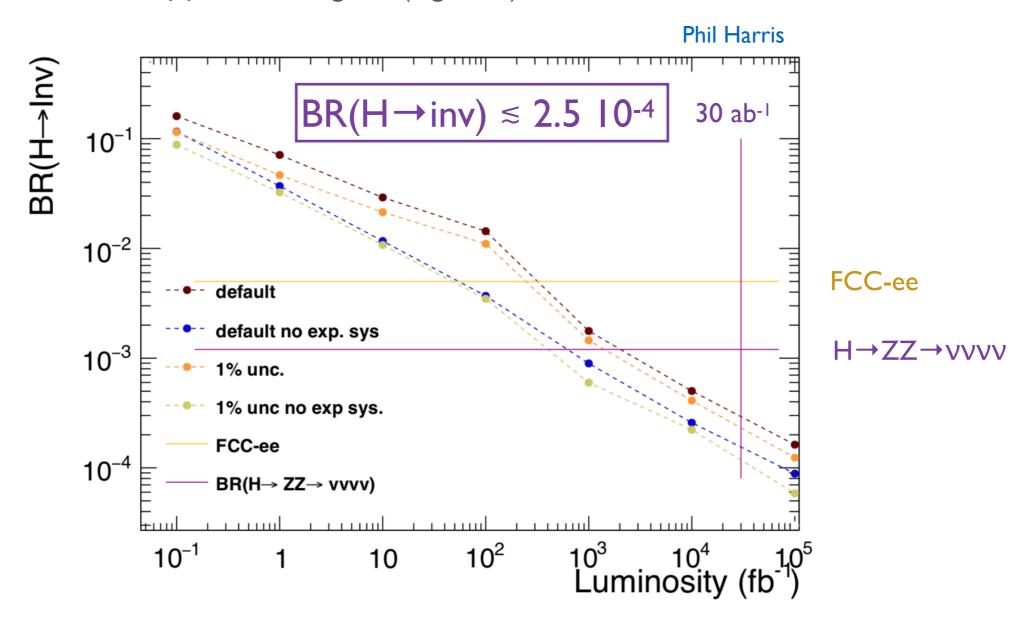
- Large statistics (10¹⁰ Higgs bosons) open up a whole new range of possibilities, allowing for precision in new kinematic regimes, and rare decay channels → complementary to FCC-ee
- Measuring ratios of couplings (or equivalently BRs), allows to cancel systematics (I% precision on "rare" couplings within reach after absolute HZZ measurement @ FCCee)
- Higgs-self coupling can be measured with $\delta \kappa_{\lambda} \approx 3$ -5% precision at FCC-hh (best achievable precision among all future facilities)
- Many more interesting studies to be done, not discussed in this talk:
 - gauge boson pair production at large mass (to study anomalous couplings)
 - differential measurements: Higgs p_T in the multi-TeV, as a probe of BSM physics
 - exclusive decays

Backup

The FCC-hh detector

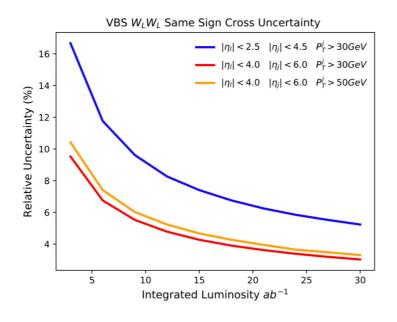
Higgs decays: γγ - ZZ - Zγ - μμ

- 1% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+α_S uncertainties with HL-LHC + FCC-ee.
- e/ μ / γ efficiency systematics (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels ($Z \rightarrow \mu \mu \gamma$), will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of m_H to within few GeV. Backgrounds (physics and instrumental) to be determined with great precision from sidebands (~infinite statistics)
 - Impact of pile-up: hard to estimate with today's analyses.
- → Focus on high-p_T objects will help to decrease relative impact of pile-up
 - Following scenarios are considered:
 - $\begin{array}{ll} \bullet & \delta_{stat} \\ \bullet & \delta_{stat} \\ \bullet & \delta_{stat} \end{array} \rightarrow \begin{array}{ll} \Rightarrow stat. \ only \ (I) \ \ (signal + bkg) \\ \Rightarrow stat. \ + syst. \ (II) \\ \bullet & \delta_{stat} \\ \bullet & \delta_{stat} \\ \end{array} \rightarrow \begin{array}{ll} \delta_{stat} \\ \bullet \\ \end{array} \rightarrow \begin{array}{ll} \delta_{stat} \\ \\ \bullet \\ \end{array} \rightarrow \begin{array}{ll} \delta_{stat} \\ \\ \bullet \\ \end{array} \rightarrow \begin{array}{ll} \delta_{stat} \\ \\ \bullet \\ \end{array} \rightarrow \begin{array}$



18

H→invisible


X (inv)
X (inv)
yet(s)

- Measure it from H + X at large p_T(H)
- Fit the E_T^{miss} spectrum
- Constrain background p_T spectrum from $Z \rightarrow \nu \nu$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra (low stat)
- Estimate $Z \rightarrow VV$ from $Z \rightarrow ee/\mu\mu$ control regions (high stat).

Vector Boson Scattering

- Sets constraints on detector acceptance (fwd jets at $\eta \approx 4$)
- Study W+/-W+/- (same-sign) channel
- Large WZ background at FCC-hh
- 3-4% precision on W_LW_L scattering xsec. achievable with full dataset (only 3σ HL-LHC)
- Indirect measurement of HWW coupling possible, $\delta \kappa_W / \kappa_W \approx 2\%$

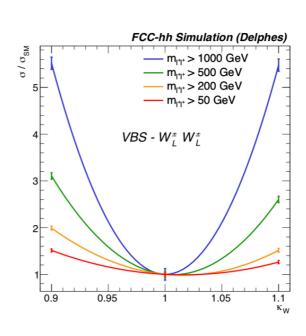
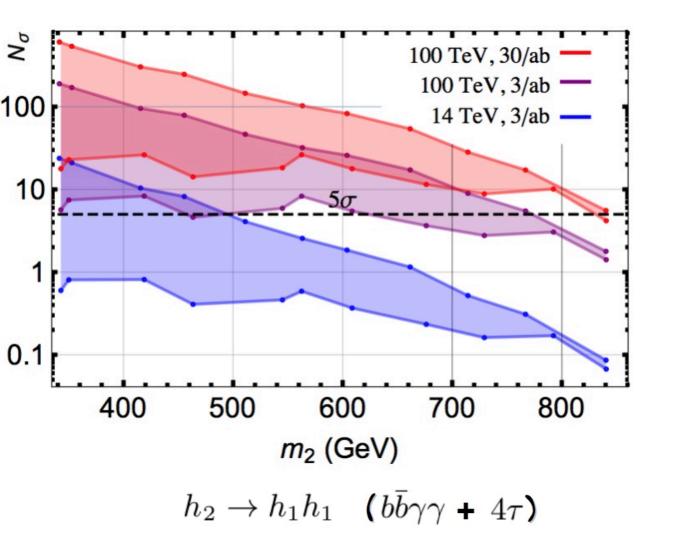


Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_LW_L \to HH$ process.

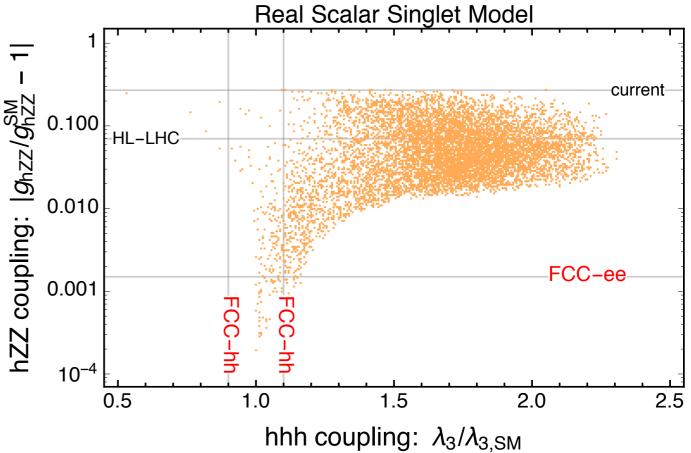
$m_{l^+l^+}$ cut	> 50 GeV	$> 200~{ m GeV}$	$> 500~{ m GeV}$	$> 1000~{ m GeV}$
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]

Detector and systematic uncertainty assumptions

- FCC-hh baseline detector performance studied in full simulation:
 - parameterised in DELPHES:
 - pile-up is not directly simulated (would result in overly pessimistic performance)
 - assumes necessary measures (hardware, software) will be taken to recover pile-up performance
 - assumes 100% trigger efficiencies, but object efficiencies parameterised in Delphes.


	scenario (I)	scenario (II)	scenario (III)	Process
τ -jet ID	1%	2.5%	5%	HH, tt, H
b-jet ID	0.5%	1%	2%	HH, tt, H
e/μ ID	0.25%	0.5%	1%	HH, ZZ, Z+jets, ttV,
γID	0.5%	1%	2%	НН, Н, јјју, уујј
Luminosity	0.5%	1%	2%	All / jjjγ, γγjj, QCD
нн (тн)	0.5%	1%	1.5%	НН
ttbar norm. (TH)	0.5%	1%	1.5%	tt
single H norm.	0.5%	1%	1.5%	Н

21


Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong 1st order EWPT (and CP violation) needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

Direct detection of extra Higgs states

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.