ICHEP 2020 Webinar, 30/7/2020 Yen-Hsun Lin Institute of Physics, Academia Sinica, Taiwan

arXiv: 2004.05312 (JCAP accepted)

in collaboration with Guey-Lin Lin (NCTU)

## Analysis on the black hole formations inside old neutron stars by isospinviolating dark matter with self-interaction

## Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions

## Part II:

Neutron star (NS) and the capture of DM

## Part III:

Black hole formation of DM inside the NS

## Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM

## Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions
- Part II:

Neutron star (NS) and the capture of DM

Part III:

Black hole formation of DM inside the NS

Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM





#### Gravitational Lenses in the COSMOS Survey Hubble Space Telescope - ACS/WFC

NASA, ESA, C. Faure (Zentrum für Astronomie, University of Heidelberg) and J.-P. Kneib (Laboratoire d'Astrophysique de Marseille)

STScI-PRC08-09



#### To alleviate these small-scale problem:

DM self-interaction is introduced

$$10^{-25} \, \frac{\mathrm{cm}^2}{\mathrm{GeV}} \le \frac{\sigma_{\chi\chi}}{m_{\chi}} \le 10^{-23} \, \frac{\mathrm{cm}^2}{\mathrm{GeV}}$$



J. S. Bullock *et al.*, *Ann. Rev. Astron. Astrophys.* **55**, 343 (2017) S. Tulin *et al.*, *Phys. Rept.* **730**, 1 (2018)

## **Constraints from DM direct searches**

#### sub-GeV DM

#### GeV DM





S. A. Malik *et al.*, *Phys. Dark Univ.* 9-10, 51 (2015)
O. Buchmueller *et al.*, *JHEP* 01, 037 (2015)
J. Aalbers *et al.* [DARWIN], *JCAP* 11, 017 (2016)
D. S. Akerib *et al.* [LUX] *PRL* 118, 021303 (2017)
C. Amole *et al.* [PICO], *PRL* 118, 251301 (2017)
E. Aprile *et al.* [XENON], *PRL* 119, 181301 (2017)

M. Crisler *et al.* [SENSEI], *PRL* **121**, 061803 (2018) (and refs. therein)

## **Dark matter self-interaction**

Introducing a dark scalar  $\phi$  and a massive  $U(1)_d$  gauge boson  $Z_d$  in the dark sector and both couple to the fermionic asymmetric DM  $\chi$ 



 $g_v$ 

 $Z_d$ 

## **DM-SM interaction and isospin violation**

The  $U(1)_d$  gauge boson  $Z_d$  can couple to SM photon via kinetic mixing  $\varepsilon_{\gamma}$  and Z boson via mass mixing  $\varepsilon_Z$ 

$$\mathcal{L}_{\rm mix} = \frac{\varepsilon_{\gamma}}{2} F_{\mu\nu} Z_d^{\mu\nu} + \varepsilon_Z m_Z^2 Z_\mu Z_d^\mu$$

- The mixing can provide portals for interacting with SM EM current  $J_{\mu}^{\rm EM}$  and weak neutral current  $J_{\mu}^{\rm NC}$
- Effectively, the DM-baryon (neutron & proton) interaction can be recasted as



## What interactions we have so far?

#### DM self-interactions



DM-SM interactions



$$\sigma_{\chi n} = \frac{C_n^2}{m_{Z_d}^4} \varepsilon_n^2 \qquad \begin{array}{l} not \ necessary \ \text{equals 1} \\ \text{isospin violation} \\ \bullet \\ \sigma_{\chi p} = \underbrace{\frac{C_p^2}{m_{Z_d}^4}} \varepsilon_p^2 \\ \sigma_{\chi p} = \underbrace{\frac{C_p^2}{m_{Z_d}^4}} \varepsilon_p^2 \\ C_{n,p} = \frac{eg_v \mu_{n,p}}{\sqrt{\pi}}, \quad C_n \approx C_p \end{array}$$

#### Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions
- Part II:

#### Neutron star (NS) and the capture of DM

Part III:

Black hole formation of DM inside the NS

Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM

# Capturing DM particles

Assuming DM velocity obeys Maxwell-Boltzmann dist.

 $\rho_0 = 0.3 \,\text{GeV}\,\text{cm}^{-3}$   $\bar{v} = 270 \,\text{km}\,\text{s}^{-1}$ 

Not-to-scale

R. Garani *et al., JCAP* **05**, 035 (2019) N.F. Bell *et al.*, 2004.14888 (2020)

## **Capturing DM particles**



## NS capture rate C<sub>c</sub>:

DM-baryon interaction  $\sigma_{\chi b}$ b = n, p for neutron and proton

1-:

aller

1.1

DEIDIG

1

$$C_c = \int_0^{R_\star} 4\pi r^2 dr \left(\frac{\rho_\chi}{m_\chi}\right) \int_0^\infty \frac{f(u)}{u} w(r) du \int_0^{v_{\rm esc}(r)} \Omega^-(w \to v) dv$$

$$\Omega^{-}(w \to v) = \int n_b(r) \frac{d\sigma_{\chi b}}{dv} |w - u| f_b(E_b, r) [1 - f_{b'}(E_b + q_0, r)] d^3 u$$

$$f_{b}(E_{b},r) = \frac{1}{e^{(E_{b}-\mu_{F}(r))/T_{NS}(r)}+1}$$

$$zero-temp. limit$$

$$0$$

$$f_{b}(E_{b})$$

$$1 - f_{b}(E_{b}+q_{0})$$

$$0$$

$$e^{\frac{q_{0}}{\mu_{F}}} E_{b}$$
Not-to-scale



## Capture rates: constant $\sigma_{\chi n} = 10^{-45} \text{ cm}^2$



Due to isospin violation, the contribution from proton can become important!

S.D. McDermott *et al.*, *PRD* **85**, 023519 (2012) Chen *et al.*, *JHEP* **08**, 069 (2018)

## How much DM is inside the NS

The number of DM particles  $N_{\chi}$ 

 $\frac{dN_{\chi}}{dt} = C_c + C_s N_{\chi}$ small comparing to  $C_c$   $N_{\chi}(t) = C_c t$ 





Not-to-scale

#### Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions
- Part II:

Neutron star (NS) and the capture of DM

Part III:

#### Black hole formation of DM inside the NS

Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM

#### **DM** SELF-GRAVITATING

#### $N_{\chi}$ increases through time!







- NS keeps capturing DM particles,  $N_{\chi}$  will continue growing
  - *r* → smaller and smaller: **DM self-gravitating**
- Rough estimation

$$N_{\chi}^{\rm sg} > \frac{4\pi r_{\rm th}^3}{3} \frac{\rho_b}{m_{\chi}}$$

#### Not-to-scale



• When DM initiates self-gravitating, *r* becomes smaller and smaller Yukawa potential

$$2\langle E_k \rangle = \frac{GN_{\chi}m_{\chi}^2}{r} + U_{\text{Yuk}}$$

•  $E_k$  will be replaced by Fermi energy  $E_F$  when DM becomes too crowded in the star ( $E_F < m_{\chi}$ , *non-relativistic*)

#### In general, NS cannot capture this much DM within t<sub>Univ.</sub>

Coulomb-like  $r_j < 1/m_{\phi}: \frac{4\pi \alpha_{\chi} m_{\phi}}{y^3} \quad y \equiv r_j m_{\phi}$   $r_j > 1/m_{\phi}: 8\alpha_{\chi} \left(\frac{m_{\phi} e^{-y}}{y} + m_{\phi} e^{-y}\right)$ short-distanced

• The attractive Yukawa interaction  $U_{Yuk}$  can reduce  $N^{Ch}$ 

$$U_{\rm Yuk} = \sum_{j}^{N_{\chi}-1} \left( \frac{\alpha_{\chi}}{r_j} e^{-m_{\phi}r_j} + \alpha_{\chi}m_{\phi}e^{-m_{\phi}r_j} \right)$$

#### Not-to-scale

► To proceed collapse,  $U_{Yuk}$  must overcome the *relativistic* Fermi pressure in the final stage ( $E_F \ge m_{\chi}$ )

However, even a BH can form, it could suffer from Hawking radiation

$$\frac{dM_{\rm BH}}{dt} = \underbrace{\frac{4\pi (GM_{\rm BH})^2 \rho_b}{v_s^3}}_{\text{accretion}} - \underbrace{\frac{1}{15360\pi (GM_{\rm BH})^2}}_{\text{Hawking radiation}} \longrightarrow M_{\rm BH} \gtrsim 3 \times 10^{36} \,\text{GeV}$$
When everything is setup:
$$N_{\rm N} > N^{\rm sg} : \text{DM self-gravitating}$$

- $N_{\chi} > N_{\chi}^{\text{Fermi}}$  : To overcome Fermi pressure
- $N_{\chi} = \frac{M_{\rm BH}}{m_{\chi}} > 3 \times 10^{36} \left(\frac{{\rm GeV}}{m_{\chi}}\right)$  : Avoiding BH evaporation

## Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions
- Part II:

Neutron star (NS) and the capture of DM

Part III:

Black hole formation of DM inside the NS

Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM

# **Exclusion plots for** $m_X$ - $m_{\varphi}$ **plane**



$$N_{\chi} = C_c t \propto N_n \sigma_{\chi n} + N_{\ell} \sigma_{\chi p}$$

To trigger BH formation

•  $N_{\chi} > N^{\text{sg}}$  with the given time t = 5 Gyr  $2\langle E_k \rangle = U_{\text{g,NS}} + U_{\text{g,DM}} + U_{\text{Yuk}}$ 

 $\frac{\varepsilon_n}{\varepsilon_n}$ 

 $\sigma_{\chi n}$ 

• To overcome relativistic Fermi pressure

$$\alpha_{\chi} > 4.7 \frac{m_{\phi}^2}{m_{\chi}^2}$$

• To avoid BH evaporation

 $N_{\chi}m_{\chi} = M_{\rm BH} > 3 \times 10^{36} \,{\rm GeV}$ 

## NS sensitivity on $\sigma_{\chi n}$ and $\epsilon_n/\epsilon_p$ : $\alpha_{\chi} = 1$





#### Part I:

- Motivation for introducing DM self-interaction
- Phenomenological model for DM-DM and DM-SM interactions
- Part II:

Neutron star (NS) and the capture of DM

Part III:

Black hole formation of DM inside the NS

Part IV:

Sensitivity of Gyr-old NS on the particle nature of DM



- ▶ NS acts as a complementary probe to other DM detections
- Proton can significantly contribute to DM capture rate in the presence of isospin violation
- ▶ If DM particles self-interact attractively, BH can form inside the NS
- By observing Gyr-old NS can set constraints on DM parameters  $\alpha_{\chi}$ ,  $m_{\chi}$ ,  $m_{\phi}$ ,  $\sigma_{\chi n,p}$
- ▶ Model-independent analysis with a well-motivated *U*(1)<sub>*d*</sub> pheno model to justify the way