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ATLAS Tile Calorimeter
I Measures energies of hadrons, jets, τ -leptons

and contributes to the Emiss
T reconstruction

I 4 partitions: EBC, LBC, LBA, EBA
I LBC and LBA form Long barrel (LB)
→ coverage: |η| < 1.0

I EBC and EBA form Extended barrel (EB)
→ coverage: 0.8 < |η| < 1.7

I Each partition has 64 modules → to achieve
full azimuthal coverage around the beam axis

I One module hosts up to 48 photomultiplier
tubes (PMTs), as shown on the bottom plot

I Sampling calorimeter built from plastic
scintillator tiles and steel absorber plates

I A particle traversing the detector generates
light in the scintillators, which is collected on
both sides of the tile and further transported
to the PMTs by wavelength shifting fibres

I Around 10.000 readout channels
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Readout cells geometry

I The readout cell geometry is given by a group of wavelength shifting fibres from individual
tiles coupled to PMTs

I Usually, a cell is read out by two PMTs, with each corresponding to a single channel
I The cell energy is then reconstructed as the sum of energies measured by two channels

I The radial segmentation divides the module into three layers – A, BC (B in the EB), D
I Layers comprise of cells with different dimensions
I Dimensions of A and BC cells are ∆η ×∆φ = 0.1× 0.1
I Dimensions of D cells are ∆η ×∆φ = 0.2× 0.1
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Calibration

I Tile Calorimeter uses 3 dedicated
calibration systems, each of them
covering different stage of signal
processing:

I Cesium
I Laser
I Charge injection

I More details about TileCal calibrations and performance in dedicated talk by Siarhei
Harkusha on Wednesday afternoon
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Signal reconstruction

I The analog signal from each PMT is shaped and split into two branches (high- and
low-gain, gain ratio 64:1) to ensure both good signal-to-noise ratio for small signals
(e.g. from muons) and large dynamic range up to ∼ 800 GeV in each channel

I Each pulse is then sampled every 25 ns and the signal amplitude (A) and time (t0) are
reconstructed, several methods available:

I Fit method: fitted by a function

f (t) = A ∗ g(t − t0) + Ped,

where g(t) is known normalized pulse
shape

I Optimal Filtering method: weighted sum
of measured samples, designed to
minimize the noise

A =
∑

ai Si ,

t0 = 1
A

∑
bi Si
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Time calibration motivation and overview

I The time calibration is important for the energy reconstruction as well as for the time
measurement

I The time measurement is exploited in
I Event & object selection – non-collision background can be removed also based on the

time information (e.g. jet cleaning)
I Specific physics analyses – searches for heavy R-hadrons decaying in calorimeters, the

corresponding signal would be delayed from that of standard jets

I Calibration procedure
I The time calibration aims to set the channel time calibration constant in such a way,

that a particle traveling from the interaction point at the speed of light gives a signal
with measured time t0 = 0

I During Run-2, the initial time constant settings was performed using high-energy
muons (parallel to the beam axis), which originate from single beam events hitting
closed collimator upstream of ATLAS detector (so called splash events, not available
each year)

I After the first collisions, time calibration constants are fine-tuned exploiting jet events
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Time calibration with splash events
I The single beam events are used by detectors for calibrations and are usually organized

in the beginning of LHC data-taking period
I Many high energy muons enter the calorimeter parallel to the beam axis, producing very

large signal in all calorimeter cells
I Data averaged over cells with same azimuth (φ)
I Slope matches the time particles need to cross the calorimeter in z-direction (left)

I Due to large signals, time is precisely measured and, after correcting for time-of-flight
(right), the time constants are derived for each channel
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Time calibration with jets

I In collision data, we exploit only cells that are part of reconstructed jets (to avoid
possible bias from non-collision background etc)

I The cell time slightly depends on cell
energy, due to slow neutrons/hadronic
component of the shower

I Therefore, a certain energy-bin is used
to calibrate the time in each channel
(2 < Echannel < 4 GeV), chosen as a
trade-off between statistics and Gaussian
shape of the time spectrum
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Time stability monitoring motivation and overview
I Especially in Run-1, TileCal suffered from frequent sudden changes of the time settings

(mostly associated to module mis-configuration after the power restart), as
demonstrated in the left plot

I Hence, two monitoring methods were developed
I Using laser events shot during empty LHC bunch-crossings
I Using jet events from collision data, similarly to the calibration

I Results from the monitoring are available shortly after the data are taken, so time
constants can be corrected before the data are processed for the physics analyses (right
plot)
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Time stability monitoring

I The tool exploiting jet events evaluates the mean channel time from events where the
corresponding cell is associated to a jet

I Monitoring plots using laser events (left) and jets (right) are perfectly compatible
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ATLAS Preliminary Tile Calorimeter
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Time performance in Run-2
I pp collision data at

√
s = 13 TeV are used for performance studies

I All Tile Calorimeter cells belonging to reconstructed jets with pT > 20 GeV are
considered, after applying the usual event and jet cleaning procedures

I The region close to 22 GeV corresponds to the high-/low-gain channel readout transition

I Plots show the mean cell time in jet events as a function of the energy deposited in cells
(per partition, 2017 - left plot, all partitions combined - right plot)

I The mean cell time slowly decreases with deposited energy due to neutrons/slow hadronic
component of the hadronic showers
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Cell time resolution in jet events
I Results per partition shown in the left plot, slightly worse resolution obtained in EBA

and EBC due to larger cells
I Results from four partitions combined are shown in the right plot

I The closed circles correspond to Gaussian σ the open squares indicate the RMS of the
underlying time distributions

I The resolution is fitted with the displayed formula for high- and low-gain separately, as
indicated with red and blue curves

I Resolution is better than 1 ns for Ecell > 4 GeV; constant term ∼ 280 ps and ∼ 370 ps
for high- and low-gain, respectively
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Cell time resolution comparison

I Fits of the cell time resolution in jet events
(pp data at

√
s = 13 TeV) as a function of

the cell energy are shown for each year

I The resolution is fitted with the formula

σ =
√

p2
0 +
( p1√

E

)2 +
(p2

E
)2
,

separately for the high- and low-gain

I In the high-gain, the differences among the
years arise from different pile-up conditions

I The improved low-gain calibration
procedure was implemented in 2016 and it
brings better time resolution even with
higher pile-up

I The bottom panel shows the fitted time
resolution relative to that obtained in 2015
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Conclusions

I Tile Calorimeter channel time calibration is performed each year at the
beginning of data taking using beam splash events and jet collision data

I The time calibration is monitored during the data taking using the laser
calibration system and jet collision data, hence the time constants can be
corrected before the data are processed for physics analyses

I In jet events, the mean cell time slightly decreases with energy deposited in cells

I The time resolution improves with energy and the constant term approaches
∼ 280 ps and ∼ 370 ps for high- and low-gain, respectively

I Time calibration showed stable performance under varying conditions during the
LHC Run-2
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