

Performance of the CMS Level-1 Trigger during Run 2

Hyejin Kwon

Seoul National University

on behalf of the CMS collaboration

The CMS Level-1 trigger architecture

- ▶ The CMS experiment implements a sophisticated two-level trigger system which reduces event rate by a factor of 10⁵
 - Level-1 (L1) trigger: The L1 trigger operates at hardware level and uses the information of the calorimeters and the muon chambers.

 The L1 trigger latency is 3.8 μs
 - High-Level-Trigger (HLT): The HLT runs on a massive computer software farm with more sophisticated algorithms
- Diagram of the Level-1 trigger system during Run 2
 - ► The calorimeter trigger consists of 2 layers:

 Layer-1 receives, calibrates, and sorts the local energy deposits ("trigger primitives" = TP)

 Layer-2 uses these calibrated TPs to reconstruct and calibrate the physics objects (e.g. electrons, jets, ..)
 - The muon trigger includes 3 muon track finders (MTF) and send them to global muon trigger (μ GMT) for final muon selection
 - The global trigger (μ GT) combines information from both the μ GMT and the calorimeter trigger

Level-1 calorimeter trigger

Reference: CMS TRG-17-001

e/γ trigger

- Dynamic clustering around seed (local maximum), extension of the cluster in φ direction to recover bremsstrahlung
- Calibration depends on E_T , η and shape of cluster
- ▶ Efficiency curve vs reconstructed electron E_T. High plateau efficiency and sharp turn-on reflects good energy resolution

τ trigger

- ightharpoonup e/ γ dynamic clustering as baseline
- lacktriangle Considered as isolated if the E_T in isolation area is smaller than a chosen value
- Excellent performance in L1 isolated τ trigger efficiency for the typical L1 thresholds

Jet/Energy sum trigger

- ▶ 9x9 trigger tower sliding window centered on jet seed
- ▶ Local pileup subtraction (PUS) technique called 'Chunky donut' is applied
- lacktriangle MET (E_T^{miss}) is the vector sum of E_T of trigger towers in the event
- Improvement in L1 MET trigger efficiency using pileup mitigation algorithm (PUM)

 e/γ like $\tau_{\rm h}$ position Jet like e/γ trigger τ trigger Clusters Isolation area τ_h candidate **CMS CMS** 40.9 fb⁻¹ (13 TeV) 58.8 fb⁻¹ (13 TeV) $h_0^{e, offline}l < 2.5$ 0.4 + E_τ e/γ, L1 ≥ 30 GeV + E_T e/γ, L1 ≥ 40 GeV $E_{\tau}^{\tau, L1} \ge 30 \text{ GeV \& isolation}$ ວ $^{ au, ext{ offline}}$ [GeV]

Level-1 muon trigger

- CMS $55.3 \text{ fb}^{-1} \text{ (13 TeV)}$ $0.8 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 0.83$ $0.6 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 1.24$ $0.4 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 2.4$ $0.4 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 2.4$ $0.4 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 2.4$ $0.4 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 2.4$ $0.4 + 0.83 < \text{m}^{\mu, \text{ offline}} \text{I} \le 2.4$
 - Efficiency for each η region:
 barrel, overlap, endcap, total
 Hyejin kwon (SNU)

 Efficiency for data and simulation vs η

- ▶ The CMS muon system consists of 3 types of muon detectors: Drift Tube (DT) chambers, Resistive Plate Chambers (RPC) and Cathode Strip Chambers (CSC)
- ▶ L1 muon trigger combines information from 3 distinct pseudorapidity regions, improving resolution and redundancy
 - ▶ BMTF: road search extrapolation track finder is used
 - OMTF & EMTF: pattern-based track finder is used. p_T assignment with look-up table is based on an a MVA for EMTF
 - MTFs are sent to global muon trigger where duplicate candidates are removed
 - ▶ Efficiency for typical L1 single muon trigger threshold (> 22GeV). High efficiency on the plateau and sharp turn-on curve especially for barrel region due to good momentum resolution

Reference: CMS TRG-17-001