Primordial Kerr Black Holes

Alexandre Arbey

Lyon University

In collaboration with J. Auffinger and J. Silk

ICHEP 2020

Prague – July 30th, 2020

Introduction	Kerr PBH evaporation	γ -ray constraints	Planet 9	BlackHawk	Conclusions
0000					
Observed	black holes (BHs)				

Three types of black holes have been discovered

- Stellar black holes BHs originated in the explosion of massive stars/supernovae, $\sim 3-100\,M_{\odot}$
- Intermediate mass black holes (IMBHs) New class of recently discovered BHs, $\sim 10^3 - 10^6 M_{\odot}$
- supermassive black holes (SMBHs) BHs at the center of galaxies, $\sim 10^6 10^9 M_{\odot}$

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000						
Origin of	primordial black ho	oles (PBHs)				

Multiple inflationary origins

- collapse of large primordial overdensities
- phase transitions
- collapse of cosmic strings, domain walls

Mass predictions

Assuming that one PBH is formed in a Hubble volume in the early Universe, one gets

$$M_{
m PBH} \sim M_{
m Planck} imes rac{t_0}{t_{
m Planck}} \sim 10^{38} \ {
m g} \ imes t_0({
m s})$$

where t_0 is the creation time.

One obtains:

- $M \sim 10^{-5}$ g for $t_0 \sim 10^{-43}$ s ightarrow Planck black holes
- $M \sim 10^{15}$ g for $t_0 \sim 10^{-23}$ s ightarrow lightest black holes still (possibly) existing
- $M \sim 10^5 \ M_{\odot}$ for $t_0 \sim 1 \ {
 m s}
 ightarrow {
 m IMHBs}?$ seeds for SMBHs?

Alexandre Arbey

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000	●0000	000	000	00	O	O
BH Hawkin	ng radiation					

Black hole horizons are interacting with the (quantum) vacuum.

Fundamental equation for Kerr BHs

Rate of emission of Standard Model particles i at energy E by a BH of mass M and spin parameter a^* :

$$Q_i = \frac{\mathrm{d}^2 N_i}{\mathrm{d}t \mathrm{d}E} = \frac{1}{2\pi} \sum_{\mathrm{dof.}} \frac{\Gamma_i(M, E, a^*)}{e^{E/T(M, a^*)} \pm 1}$$

 Γ_i is the greybody factor (~ absorption coefficient in Planck's blackbody radiation law)

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000	○●○○○	000	000		O	⊖
Reduced to	emperature					

Hawking temperature for Kerr BHs

$$T(M, a^*) = \frac{1}{4\pi M} \left(\frac{\sqrt{1 - (a^*)^2}}{1 + \sqrt{1 - (a^*)^2}} \right) \xrightarrow[a^*=0]{\text{Schwarzschild}} \frac{1}{8\pi M}$$

Introduction 0000	Kerr PBH evaporation ○○●○○	γ -ray constraints 000	Graviton emission 000	Planet 9	BlackHawk O	Conclusions ⊖		
Enhanced emission								

BH-particle spin coupling \Rightarrow superradiance effects (see e.g. Chandrasekhar & Detweiler papers in the 1970s)

ightarrow Hawking radiation enhanced for particles of spin 1 or 2

BH lifetime

BH mass (solid) and spin (dotted) evolution

AA, J. Auffinger, J. Silk, MNRAS 494 (2020) 1257

Introduction 0000	Kerr PBH evaporation 0000●	γ -ray constraints 000	Graviton emission 000	Planet 9 00	BlackHawk O	Conclusions O		
Extremal spin today?								

Could high spin BHs exist today? Can we get over Thorne's limit on the spin of rotating BHs from disk accretion?

→ Yes, with sufficiently massive and extremal PBHs

AA, J. Auffinger, J. Silk, MNRAS 494 (2020) 1257

leatropic g	amma ray backer	and (ICPP) of	anctrainte			
Introduction	Kerr PBH evaporation	γ-ray constraints ●○○	Graviton emission	Planet 9	BlackHawk ○	Conclusions

Origin

Diffuse background +

- Active galactic nuclei
- Gamma ray bursts
- DM annihilation/decay?
- Hawking radiation?

Flux estimation for BHs

Arbey *et al.* [PRD 101 (2020) 023010]

$$egin{split} I &\approx rac{1}{4\pi} E \int_{t_{
m CMB}}^{t_{
m today}}(1+z(t)) \ & imes \int_M \left[rac{{
m d}n}{{
m d}M} rac{{
m d}^2N}{{
m d}t{
m d}E}(M,(1+z(t))E)\,{
m d}M
ight]{
m d}t \end{split}$$

0000	00000	000	000	00	O	O			
IGRB and Kerr PBHs, monochromatic mass distributions									

Main spin effects

- enhanced luminosity ⇒ stronger constraints
- reduced temperature \Rightarrow reduced emission energy \Rightarrow weaker constraints

Main width effects log-normal distribution $M dn/dM \propto \exp(-\ln(M/M_*)^2/2\sigma^2)$

- broadening of the emission spectrum \Rightarrow stronger constraint
- broadening of the mass distribution \Rightarrow larger DM total density \Rightarrow weaker constraint

0000		000		00		O			
Hawking radiation of spin 2 gravitons									

All particles can be emitted by a black hole!

Including gravitons / gravitational waves...

Alexandre Arbey

ICHEP 2020 - Prague - July 30th, 2020

Emission of gravitational waves by BHs

Supermassive BHs emit at frequencies of LIGO-VIRGO/LISA/BBO

Unfortunately the fluxes of such heavy BHs are too small!

Gravitational waves emitted by very light PBH which vanished before or after inflation

 $ightarrow {
m cosmological}$ background of gravitational waves

Discovering gravitational waves emitted via Hawking radiation would validate the existence of the graviton!

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000		000	000	●○	O	O
A black he	ole in the Solar Sy	stem?				

Anomalous orbits of Trans-Neptunian Objects (TNOs) and excess in microlensing events \rightarrow undiscovered Planet 9 at distance 450 - 700 AU and with mass 5 - 10 M_{\oplus} ?

Maybe a primordial black hole (see Scholtz & Unwin 1909.11090)!

Hawking radiation emitted at the GHz frequency

AA, J. Auffinger, 2006.02944

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000		000	000	○●	O	O
Towards P	lanet 9					

Hawking radiation too weak to be seen from Earth

AA, J. Auffinger, 2006.02944

 \rightarrow need to send a probe in orbit to study the emitted radio waves (and why not gravitational waves)

 $(\rightarrow$ Breakthrough Starshot project, proof-of-concept for a fleet of light sail spacecrafts)

Introduction	Kerr PBH evaporation	γ -ray constraints	Graviton emission	Planet 9	BlackHawk	Conclusions
0000		000	000	00	●	⊖
BlackHawk						

Public C code computing Hawking radiation:

- Schwarzschild & Kerr PBHs
- primary spectra of all Standard Model fundamental particles
- secondary spectra of stable particles (hadronization with PYTHIA or HERWIG)
- extended mass and spin functions
- time evolution of the PBHs

Download: http://blackhawk.hepforge.org

Manual: arXiv:1905.04268, Eur.Phys.J. C79, 693

Introduction 0000	Kerr PBH evaporation	γ-ray constraints 000	Graviton emission 000	Planet 9	BlackHawk O	Conclusions ●
Conclusions						

Main results

- Study of the evolution of Kerr PBHs and constraints from IGRB
- Extension to more realistic broad PBH mass functions
- Still open window from planet-mass BHs as dark matter
- Does Planet 9 exist and is it a PBH?
- Public code BlackHawk to compute Hawking radiation

Perspectives

- Closing the remaining PBH mass windows for all dark matter into PBHs?
- Primordial BH / Astrophysical BH discrimination using GW events?
- Constraints from extrasolar planet searches?
- Other constraints...

Backup

Black hole metrics

(in the natural unit system with $c = \hbar = k_B = 1$)

Schwarzschild metric for a static compact object of mass M

$$d\tau^{2} = \left(1 - \frac{2GM}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2GM}{r}} - r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

One defines the Schwarzschild radius: $R_s = 2GM$. If the mass M is completely within $r < R_s$, the radius $r = R_s$ constitutes a horizon.

 \longrightarrow Black Hole!

Kerr metric for a static compact object of mass M and angular momentum J

$$d\tau^{2} = \left(dt - a\sin^{2}\theta d\phi\right)^{2}\frac{\Delta}{\Sigma} - \left(\frac{dr^{2}}{\Delta} + d\theta^{2}\right)\Sigma$$
$$-\left(\left(r^{2} + a^{2}\right)d\phi - adt\right)^{2}\frac{\sin^{2}\theta}{\Sigma}$$

 $a=J/M,\ \Sigma=r^2+a^2\cos^2 heta,\ \Delta=r^2-R_sr+a^2,\ R_s=2GM$

The horizon exists but is deformed and flattened \rightarrow Kerr (Rotating) Black Hole!

Solving the cusp-core problem with PBHs

In presence of heavy PBHs, possible transition from cusp to core

On the right: N-body simulation of dwarf galaxy with $10^7 M_{\odot}$ halo made of 50% of dark matter in the form of 100 M_{\odot} PBHs and 50% of 1 M_{\odot} DM particles. From Boldrini et al. [1909.07395, MNRAS 492 (2020) 5218].

Gravitational heating by heavy PBHs:

- Dynamical friction of DM particles on PBHs
- Two body relaxation between PBHs

Kerr metric

$$ds^{2} = \left(1 - \frac{2Mr}{\Sigma^{2}}\right)dt^{2} + \frac{4a^{*}M^{2}r\sin(\theta)^{2}}{\Sigma^{2}}dtd\phi - \frac{\Sigma^{2}}{\Delta}dr^{2}$$
$$- \Sigma^{2}d\theta^{2} - \left(r^{2} + (a^{*})^{2}M^{2} + \frac{2(a^{*})^{2}M^{3}r\sin(\theta)^{2}}{\Sigma^{2}}\right)\sin(\theta)^{2}d\phi^{2}$$

$$\Sigma \equiv r^2 + (a^*)^2 M^2 \cos(heta)^2$$
 and $\Delta \equiv r^2 - 2Mr + (a^*)^2 M^2$

Equations of motion in free space

Dirac:
$$(i\partial - \mu)\psi = 0$$
 (fermions)
Proca: $(\Box + \mu^2)\phi = 0$ (bosons)

 $\mu = \text{rest mass}$

Teukolsky radial equation

$$\frac{1}{\Delta^{s}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\Delta^{s+1}\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left(\frac{\mathcal{K}^{2}+2i\,s(r-M)\mathcal{K}}{\Delta} - 4i\,s\text{E}r - \lambda_{slm} - \mu^{2}r^{2}\right)R = 0$$

R radial component of ψ/ϕ $K\equiv (r^2+a^2)E+a\,m,\,s=$ spin, l= angular momentum and m= projection

Transformation into a Schödinger equation

Change $\psi/\phi \longrightarrow Z$ and $r \longrightarrow r^*$ (generalized Eddington - Finkelstein coordinate) (Chandrasekhar & Detweiler 1970s)

$$\frac{\mathrm{d}^2 Z}{\mathrm{d}r^{*2}} + (E^2 - V(r^*))Z = 0 \tag{1}$$

Solved with purely outgoing solution $Z \xrightarrow[r^* \to -\infty]{} e^{-i Er^*}$ Transmission coefficient $\Gamma \equiv |Z_{out}^{+\infty}/Z_{out}^{horizon}|^2$

Kerr Hawking radiation equations

Chandrasekhar potentials

$$\begin{split} V_{\mathbf{0}}(r) &= \frac{\Delta}{\rho^4} \left(\lambda_{\mathbf{0} \ lm} + \frac{\Delta + 2r(r-M)}{\rho^2} - \frac{3r^2\Delta}{\rho^4} \right) \\ V_{\mathbf{1}/2,\pm}(r) &= (\lambda_{\mathbf{1}/2 \ lm} + 1) \frac{\Delta}{\rho^4} \mp \frac{\sqrt{(\lambda_{\mathbf{1}/2,l,m} + 1)\Delta}}{\rho^4} \left((r-M) - \frac{2r\Delta}{\rho^2} \right) \\ V_{\mathbf{1},\pm}(r) &= \frac{\Delta}{\rho^4} \left((\lambda_{\mathbf{1} \ lm} + 2) - \alpha^2 \frac{\Delta}{\rho^4} \mp i\alpha\rho^2 \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{\Delta}{\rho^4} \right) \right) \\ V_{\mathbf{2}}(r) &= \frac{\Delta}{\rho^8} \left(q - \frac{\rho^2}{(q-\beta\Delta)^2} \left((q-\beta\Delta) \left(\rho^2 \Delta q^{\prime\prime} - 2\rho^2 q - 2r(q^\prime \Delta - q\Delta^\prime) \right) \right) \\ &+ \rho^2 (\kappa \rho^2 - q^\prime + \beta\Delta^\prime) (q^\prime \Delta - q\Delta^\prime) \right) \end{split}$$

 $\rho^{\rm 2} \equiv {\it r}^{\rm 2} + \alpha^{\rm 2} ~{\rm and}~ \alpha^{\rm 2} \equiv {\it a}^{\rm 2} + {\it am}/{\it E}$

$$q(r) = \nu \rho^{4} + 3\rho^{2}(r^{2} - a^{2}) - 3r^{2}\Delta$$

$$q'(r) = r\left((4\nu + 6)\rho^{2} - 6(r^{2} - 3Mr + 2a^{2})\right)$$

$$q''(r) = (4\nu + 6)\rho^{2} + 8\nu r^{2} - 6r^{2} + 36Mr - 12a^{2}$$

$$\beta_{\pm} = \pm 3\alpha^{2}$$

$$\kappa_{\pm} = \pm \sqrt{36M^{2} - 2\nu(\alpha^{2}(5\nu + 6) - 12a^{2}) + 2\beta\nu(\nu + 2)}$$

Page parameters (Page 1976)

$$f(M, a^*) \equiv -M^2 \frac{\mathrm{d}M}{\mathrm{d}t} = M^2 \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{E}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$
$$g(M, a^*) \equiv -\frac{M}{a^*} \frac{\mathrm{d}J}{\mathrm{d}t} = \frac{M}{a^*} \int_0^{+\infty} \sum_{\mathrm{dof.}} \frac{m}{2\pi} \frac{\Gamma(E, M, a^*)}{e^{E'/T} \pm 1} \mathrm{d}E$$

Evolution equations (Page 1976)

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\frac{f(M, a^*)}{M^2}$$
$$\frac{\mathrm{d}a^*}{\mathrm{d}t} = \frac{a^*(2f(M, a^*) - g(M, a^*))}{M^3}$$

Reduced lifetime

Decrease of BH lifetime τ for increasing initial spin a_i^* , compared to the Schwarzschild

Log-normal distributions

Definition

$$\frac{\mathrm{d}n}{\mathrm{d}M} = \frac{A}{\sqrt{2\pi}\sigma M} \exp\left(-\frac{(\log(M/M_*))^2}{2\sigma^2}\right)$$

 $M^* = \text{central mass}, \sigma = \text{width (dimensionless)}$

Log-normal distributions (normalized to unity, $M^* = 3 \times 10^{15}$ g)

