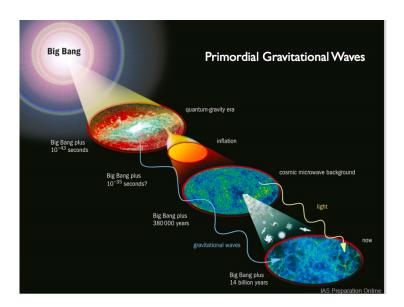
Post-inflationary Production of Light Dark Sectors

Anish Ghoshal

INFN
Sezione di
Roma Tor Vergata

I.N.F.N. - Tor Vergata, Rome, Italy aghoshal@roma2.infn.it

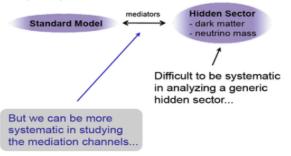

July, 2020 Prague

- EPJC volume 79, 818 (2019)

Outline of talk:

- Light Dark Sectors in Particle Physics
- (P)reheating the Universe after Inflation
- Sterile Neutrinos & Cosmological Bounds
- Dark Matter Production
- Conclusion

History of the Universe



Motivation for Light Dark Sector

Many motivated particle physics scenarios requires such bosonic mediators: sterile neutrinos, thermal and non-thermal dark matter, asymmetric dark matter.....

New physics in a hidden sector

Arguably, most empirical evidence for new physics (e.g. neutrino mass, dark matter) doesn't point a priori to a specific mass scale, but rather to a hidden (or dark) sector.

(P)reheating: Concepts

Cosmic Inflation:

- Accelerated expansion of universe to solve Horizon problem, Flatness problem, generate initial seed fluctuation to explain structure formation
- Candidate: a Scalar field known as the Inflaton.

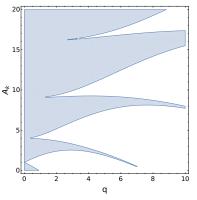
Post-inflationary Dynamics:

- · After slow-roll ends, inflaton field oscillates around the minima of potential
- Energy density of oscillating inflaton field evolves as matter $\sim 1/a^3$ for quadratic inflation
- Oscillating inflaton field is interpreted as collection of stationary inflaton particles which decay perturbatively - Reheating

• Preheating:

- Non-perturbative production of particles from the classical oscillation of the inflaton field.
- Any field χ can be decomposed into fourier modes,

$$\chi(t,x) = \int \frac{d^3k}{(2\pi)^{3/2}} \left(a_k \chi_k e^{-ik.x} + a_k^{\dagger} \chi_k^* e^{ik.x} \right)$$

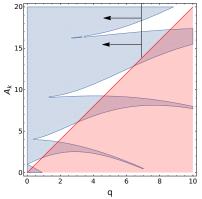

• Dynamics of the modes χ_k of a field χ are given by Mathieu Equation -

$$\frac{d^2\chi_k}{dz^2} + (A_k - 2q\cos(2z))\chi_k = 0$$

(where $z=m_{\phi}t,\ q=\frac{\lambda_{\phi\chi}\Phi^2}{4m_{\phi}^2},\ A_k=\frac{k^2}{m_{\phi}^2 a^2}+2q,\ a=$ Scale factor, t=time, $\Phi=$ Amplitude of ϕ oscillation, the potential is $\frac{1}{2}m_{\phi}^2\phi^2+\frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$)

Mathieu instability bands

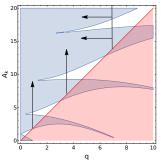
• Oscillatory solution in (blue), exponentially growing solution in (white) regions.



- Growing modes are interpreted as particle production during inflation.
- ullet For some q, lowest A_k has highest exponent of growing exponential particle production.

Identifying Growing modes with time

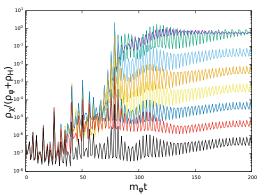
•
$$q = \frac{\lambda_{\phi\chi}\Phi^2}{4m_{\phi}^2}$$
, $A_k = \frac{k^2}{m_{\phi}^2a^2} + 2q$,


- $\frac{1}{2}\lambda_{\phi\chi}\phi^2\chi^2$ -term acts as an inflaton effective mass $m_\phi^{\rm eff}=\sqrt{m_\phi^2+\lambda_{\phi\chi}\langle\chi^2\rangle}$.
- ullet So, with time Φ decreases and $m_\phi^{\it eff}$ increases, resulting a decrement in q.
- Growing modes bands get narrower; lower momentum modes become growing modes.

Effect of Quartic self-interaction of χ

Let's pretend this slide is absent for the time being !

- $\lambda_{\chi}\chi^4$ gives rise to effective mass term of χ , $m_{\chi}^{\rm eff}=\sqrt{\lambda_{\chi}\langle\chi^2\rangle}$.
- A_k gets modified into $A_k = \frac{k^2}{m_\phi^2 a^2} + \frac{m_\chi^2}{m_\phi^2} + 2q$.



- Blocks lower momentum modes to come into play Quartic Blocking.
- It becomes more difficult to produce χ -particles with larger λ_{χ} -values.

Numerical Simulation: LATTICEEASY

Let's pretend this slide is absent for the time being !

- As time goes and the fluctuations grow, these effects begin to show up, Mathieu equation becomes insufficient to describe the preheating dynamics
- Numerical simulations become important to get accurate dynamics
- We use publicly available code LATTICEEASY for the simulation

• Transfer of energy density with growing values of $\lambda_{\chi} = 10^{-7} - 1$.

Scenario: Sterile Neutrino Sector

- Neutrino oscillation: Neutrinos can change flavour
- A flavour eigenstate is linear combination of mass eigenstates (which evolve in time as hamiltonian eigenstates)

$$|
u_{lpha}>=\sum_{k=1}^{3}U_{lpha k}^{st}|
u_{k}>$$
 $|
u_{lpha}(t)>=\sum_{k=1}^{3}U_{lpha k}^{st}\mathrm{e}^{-iE_{k}t}|
u_{k}>$

Probability of detecting another flavour at time t,

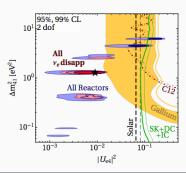
$$P_{\nu_{\alpha} \to \nu_{\beta}} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} e^{-i(E_{k} - E_{j})t}$$

For relativistic neutrinos,

$$E_{i} = \sqrt{|\overrightarrow{p}|^{2} + m_{i}^{2}} \approx |\overrightarrow{p}| + \frac{m_{i}^{2}}{2|\overrightarrow{p}|}$$

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sum_{k,j=1}^{3} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-i\frac{\Delta m_{kj}^{2}}{2|\overrightarrow{p}|}t\right)$$

⇒ Neutrino Oscillation (depends on momentum and mass squared difference)



Neutrino Anomalies

- Small Baseline Experiments:
 - ullet LSND and MiniBooNE observed excess in $ar
 u_{\mu}
 ightarrow ar
 u_{
 m e}$ channel
 - ullet MiniBooNE have also indicated an excess of u_e in the u_μ beam
- Within a 3+1 framework, MiniBooNE result hints towards the existence of a sterile neutrino with eV mass at 4.8σ significance, which raises to 6.1σ when combined with the LSND data
- ullet Daya Bay, NEOS, DANSS and other reactor experiments probed the u_e disappearance in the $u_e
 ightarrow
 u_e$ channel
- ullet GALLEX ,SAGE have performed similar measurements in the $u_e
 ightarrow
 u_e$ channel
- Caution: $\nu_{\mu}(\bar{\nu}_{\mu}) \to \nu_{e}(\bar{\nu}_{e})$ appearance in LSND and MiniBooNE are in tension with strong constraints on ν_{μ} disappearance, mostly from MINOS and IceCUBE, while attempting to fit together using a 3+1 framework
- Although debatable in 3+1 framework, such a light additional sterile neutrino, with mixing $\sin \theta \lesssim \mathcal{O}(0.1)$ with the active neutrino species, can be consistent with constraints from various terrestrial neutrino experiments

Neutrino Anomaly

The global picture:

Analysis	$\Delta m_{41}^2 [\mathrm{eV^2}]$	$ U_{e4} $	$ U_{\mu4} $ $\chi^2_{ ext{min}}/ ext{DOF}$	GOF
$\stackrel{\scriptscriptstyle(-)}{\nu_e}$ disapp (flux fixed)	1.3	0.1	- 552.8/588	85%
$\stackrel{\scriptscriptstyle(-)}{\nu}_e$ disapp (flux free)	1.3	0.095	- 542.9/586	90%

MD, HERNÁNDEZ-CABEZUDO, KOPP, MACHADO, MALTONI, MARTINEZ-SOLER, SCHWETZ, "UPDATED GLOBAL ANALYSIS OF NEUTRINO OSCILLATIONS IN THE PRESENCE OF EV-SCALE STERILE NEUTRINOS," JHEP, 2018

Cosmological Allowance

Cosmology for this extra eV-scale sterile neutrino can be parameterized by 2 main parameters:

① Total mass of neutrinos $\sum m_{\nu_i}$

$$\Omega_{\nu} = \frac{\sum m_{\nu_i} n_{\nu,0}}{\rho_{cr,0}} = \frac{\sum m_{\nu_i}}{eV} \frac{1}{94.1(93.1)h^2}$$

 $oldsymbol{0}$ Effective number of neutrinos $N_{
m eff}$ $N_{
m eff}$ affects cosmology through -

$$ho_R =
ho_\gamma \left(1 + rac{7}{8} \left(rac{4}{11}
ight)^{4/3} extsf{N}_{ ext{eff}}
ight)$$

These equations assume thermalization of the neutrino species. We will next look into the $N_{\rm eff}$ bounds from BBN, CMB & LSS observations.

Constraints from Cosmology: eV sterile neutrino ruled out

 The bounds (from Big Bang Nucleosynthesis, Cosmic Microwave Background & Large Scale Structure) summarized:

$$\triangle \textit{N}_{\rm eff} \lesssim 0.5$$

$$\sum \textit{m}_{\nu_i} < 0.16 \ \text{eV} \ ({\rm PLANCK \ TT + Low \ E + BAO})$$

 Conclusion from Standard Cosmology-Extra neutrino species needed by particle physics is not allowed in cosmology if thermalized

Rescue: If sterile neutrinos involve light dark sectors generating secret interactions within them, they help to relax the bounds.

Saving Sterile Neutrino: Pseudoscalar Interaction

 Saving Sterile Neutrino: Archidiacono et. al. (2014) showed that adding a pseudoscalar interaction can solve the tension -

$$\mathcal{L} \sim g_s \chi \overline{\nu}_s \gamma_5 \nu_s$$

- MSW like potential induced by new interaction with $10^{-4} \gtrsim g_s \gtrsim 10^{-6}$ suppress sterile neutrino production by suppressing mixing angle until after neutrino decoupling, thus not letting it thermalise with plasma
- At late time, annihilation of $\nu_{\rm s}$ to χ particles with chosen $m_\chi \lesssim 0.1 {\rm eV}$ can evade the mass bound of neutrinos
- ullet From supernova energy loss argument $g_{
 m s}\lesssim 10^{-4}$
- Similar results with vector interactions (Dasgupta et. al. (2013)).

Key Assumption: Primoridal density of χ bosons needs to be negligible to avoid these constraints.

Problem with this model

We investigate from the inflationary epoch

Assume ϕ as inflaton with quadratic potential \downarrow Constrain $\mathbf{n}_s - r$ parameters from PLANCK \downarrow Produce χ and H by Preheating \downarrow Study energy density of χ and H \downarrow ν_s production through $\chi\chi \to \nu_s\nu_s$

- Understand the parameter space allowed by Cosmology

 A pseudoscalar χ coupled to the inflaton gets produced copiously during preheating
- ullet Such an extra relativistic species in direct conflict with $N_{
 m eff}$ bounds.
- \bullet Need to suppress production of χ from preheating Quartic Blocking.

Now let's go back to the earlier slides we pretended to be absent!

Potential and Parameter Choice

The scalar potential is,

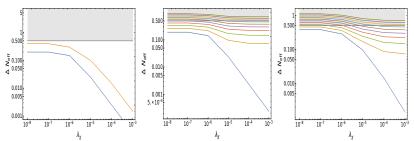
$$V = \frac{m_{\phi}^{2}}{2}\phi^{2} + \frac{\lambda_{\phi}}{4}\phi^{4} + \frac{\lambda_{\chi}}{4}\chi^{4} + \frac{\lambda_{H}}{4}|H|^{4} + \frac{\sigma_{\phi\chi}}{2}\phi\chi^{2} + \frac{\sigma_{\phi H}}{2}\phi|H|^{2} + \frac{\lambda_{\phi\chi}}{2}\phi^{2}\chi^{2} + \frac{\lambda_{\phi H}}{2}\phi^{2}|H|^{2} + \frac{\lambda_{\chi H}}{2}\chi^{2}|H|^{2}$$

• Parameter choices: $m_\phi=10^{-6}~{\rm M_{pl}}$ (successful inflation with small non-minimal coupling to gravity $\mathcal{O}(10^{-3})$) $\lambda_\phi=10^{-14}$ (even if kept 0, will be generated through RGE) $\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-7}, 10^{-6}~(\gtrsim 10^{-8}~{\rm for~efficient~preheating,~higher~value~can~ruin~inflation)}$

 $\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-1}, 10^{-3}$ ($\lesssim 10^{-3}$ for efficient preneating, higher value can ruln inflation, $\sigma_{\phi H}=10^{-10}$ and 10^{-8} M $_{\rm pl}$ (to show two scenarios, one with a non-relativistic phase and one without)

 $\lambda_H=10^{-7}$ and 10^{-4} (to keep minima of potential at 0,0,0 in field space, avoiding any additional mass term for χ or H)

 $\sigma_{\phi\chi}$ neglected (to avoid additional χ population during decay of ϕ)


 $\lambda_{\chi H}$ neglected (to avoid thermalisation between χ and H)

 λ_χ kept variable to suppress χ production variably

• Isocurvature bounds ($m_H, m_\chi > H$ during inflation) are trivially satisfied for parameter choice of $\lambda_{\phi\chi} = \lambda_{\phi H} = 10^{-7}$

$\triangle N_{\text{eff}}$ contribution from χ produced in (p)reheating

Some Results:

- $\lambda_H = 10^{-7} \&$
- $\sigma_{\phi H} = 10^{-10} M_{Pl}$.
- $\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-7}, 10^{-6}$ from bottom to top left panel.
- Central panel: $\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-7}$, when a fraction of the inflaton ϕ (in decreasing order from bottom to top) decays into χ respectively.
- Right panel: Same as central panel but with $\,\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-6}.$

Scenario: Dark Matter

The case for Dark Matter:

- Non-thermal Production of Dark Matter from inflationary (p)-reheating.
- No well-established Detection of DM yet - points towards feeble DM SM interactions.
- To keep in mind:
 - \bullet Right DM relic, i.e. $\rho_\chi/\rho_{\it SM}=5.3$ now
 - BBN bounds on extra relativistic species, i.e. $\rho_\chi/\rho_{SM} \lesssim 0.051$ during BBN
 - Isocurvature bounds

- "Non-thermal production of Dark Matter after Inflation", JCAP (December 2018)

Conclusion: Light Dark Sectors

 Particle production of scalar fields during (p)reheating can be suppressed with a quartic self interaction term.

Sterile Neutrino

- A sterile neutrino (with eV mass and size-able mixing with active neutrinos) is required to solve neutrino anomalies
- ullet This species, if thermalised with SM, is highly constrained by $N_{
 m eff}$ bounds from BBN, CMB & LSS.
- Secret interaction with χ blocks ν_s production from ν_{active} but new production channel opens through χγ → ν_sν_s.
- To suppress this production channel, χ needs to be of sub-dominant energy-density after (p)reheating.
- This can be achieved through Quartic blocking.

Non-thermal Dark Matter

- Production of DM during (p)reheating is novel mechanism.
- However there is huge transfer of energy density from the inflaton sector to the dark sector.
- In order to satisfy the relic, Quartic blocking and/or late inflaton decay into H giving rise to a non-relativistic phase & subsequent non-standard evolution like cannibalism, etc. is required.

There will be Gravitational Wave production from such violent preheating. Study currently underway.

Thank You

Backup: Suppressed Production

$$\rho = \frac{1}{2} f_0 \begin{pmatrix} P_a & P_x - iP_y \\ P_x + iP_y & P_s \end{pmatrix}, \tag{32}$$

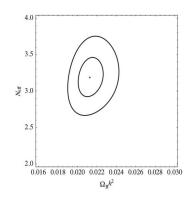
where f_0 is the Fermi-Dirac distribution function. The QKEs are now

$$\begin{split} \dot{P}_{a} &= V_{x}P_{y} + \varGamma_{a}\left[2 - P_{a}\right], \\ \dot{P}_{s} &= -V_{x}P_{y} + \varGamma_{s}\left[2\frac{f_{\text{eq},s}(T_{\nu_{s}}, \mu_{\nu_{s}})}{f_{0}} - P_{s}\right], \\ \dot{P}_{x} &= -V_{z}P_{y} - DP_{x}, \\ \dot{P}_{y} &= V_{z}P_{x} - \frac{1}{2}V_{x}(P_{a} - P_{s}) - DP_{y}. \end{split}$$

and the potentials are:

$$egin{align} V_x &= rac{\delta m_{
u_s}^2}{2p} \sin 2 heta_s, \ V_z &= -rac{\delta m_{
u_s}^2}{2p} \cos 2 heta_s - rac{14\pi^2}{45\sqrt{2}} prac{G_F}{M_Z^2} T^4 n_{
u_s} + V_s, \ \end{aligned}$$

Big Bang Nucleosynthesis (BBN)

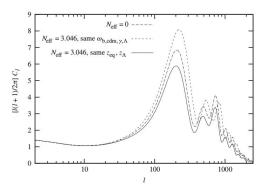

 Before nucleosynthesis protons and neutrons were in equilibrium by weak interactions through active neutrinos &

$$\frac{n}{p} = \exp\left(\frac{-\triangle m}{T}\right)$$

- When $\sigma \sim H$, neutrinos decouple and n:p ratio freezes out.
- Nucleosynthesis (production of light neuclei ²H, ³He, ⁴He, ⁷Li from neutron and proton) happens
- ullet Neutrons are unstable o only primordial n's present today are preserved in atoms mostly in 4He

Larger N_{eff}

- \rightarrow larger radiation density
- \rightarrow larger Hubble parameter
- $\rightarrow \ \mathsf{earlier} \ \mathsf{neutrino} \ \mathsf{decoupling}$
- \rightarrow larger n:p at freezeout
- ightarrow larger ${}^4\dot{H}e$ abundance
- $^{ ext{ }^{ ext{4}} ext{He}}$ abundance data ightarrow $ext{\it N}_{ ext{\it eff}}$ upto 3.5 at 68% CL

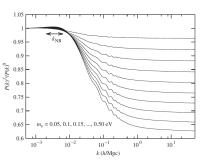

- - Lesgourgues et. al. (Neutrino Cosmology)

◆□▶◆御▶◆蓮▶◆蓮▶ 蓮 めの◎

Anish Ghoshal (I.N.F.N. - Tor Vergata)

Cosmic Microwave Background (CMB)

- Larger N_{eff}
 - → larger radiation density
 - \rightarrow later matter radiation equality
 - \rightarrow less time between equality and photon decoupling
 - $\rightarrow \mathsf{smaller} \; \mathsf{sound} \; \mathsf{horizon}$
 - \rightarrow CMB TT peaks at higher I values with higher peak heights
- \bullet From CMB Power-Spectrum, analysing Planck data with $\Lambda \textit{CDM} + \textit{N}_{\textit{eff}}$ 7 parameters one can constrain $\textit{N}_{\textit{eff}}$


Large Scale Structure (LSS)

• In linear scalar perturbation theory, modes evolve as -

$$\delta_i^{\prime\prime} + \frac{a^\prime}{a}\delta_i^\prime + \left(k^2 - \frac{3a^2\mathcal{H}^2}{c_s^2}\right)c_s^2\delta_i = 0$$

- ullet Neutrino density enters the equation through ${\cal H}$ and ${\cal H}^2$ term by Friedman equation
- A freestreaming length can be defined under which length scale the perturbation is suppressed -

$$\lambda_{\mathit{fs}}(\eta) = \mathsf{a}(\eta) rac{2\pi}{k_{\mathit{fs}}} = 2\pi \sqrt{rac{2}{3}} rac{\mathsf{c}_{
u}(\eta)}{\mathcal{H}(\eta)}$$

Suppressed Production

Evolving Boltzmann Equation:

$$\begin{split} \left(\frac{\partial}{\partial t} - HE \frac{\partial}{\partial E}\right) f_{\nu_z}(E,t) &= C_{\chi\chi \longrightarrow \nu_z \nu_z} \\ &\quad + \frac{1}{2} \sin^2(2\theta_M(E,t) \Gamma(E,t)) \\ &\quad \times f_a(E,t) \end{split} \label{eq:fitting_eq}$$

$$\sin^2(2\theta_M) = \frac{\sin^2(2\theta_0)}{\left(\cos(2\theta_0) + \frac{2E}{\delta m^2}V_{eff}\right)^2 + \sin^2(2\theta_0)}$$

$$V_{\mathrm{eff}}^{\mathrm{bubble}} = -\frac{7\pi^2 g_s^2 E T_\chi^4}{180 m_\chi^4}$$

On the $m_{\gamma}-g_s$ plane

Anish Ghoshal (I.N.F.N. - Tor Vergata)



Figure: The blue and magenta regions correspond to the allowed regions in $m_\chi - g_s$ plane from $N_{\rm eff}$ constraints of BBN (\triangle $N_{\rm eff} \lesssim 0.5$) for $\theta_0 = 0.1$ and 0.05

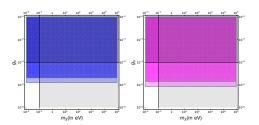


Figure: The region with lighter shade corresponds to the allowed region from $N_{\rm eff}$ constraints of BBN (for $\triangle N_{\rm eff} \lesssim 0.5$). The region with darker shade is the new bound, if $\bar{\chi}$ being produced during (p)reheating leads 0.4. Left and right panels correspond to $\theta_0 = 0.1$ and 0.05 NuCos

July, 2020 Prague 27 / 28

$\triangle N_{\text{eff}}$ contribution from χ produced in (p)reheating

Some Results:

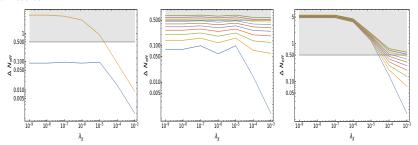


Figure: $\lambda_H=10^{-4},~\sigma_{\phi H}=10^{-8}~M_{Pl},~\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-7},10^{-6}$ from bottom to top for the left panel. Plots in the centre and right panels correspond to the cases $~\lambda_{\phi\chi}=\lambda_{\phi H}=10^{-7},10^{-6}$, when a fraction of the inflaton (0 to 0.1 in steps of 0.01, from bottom to top) decays into $~\chi$ respectively.