Primordial Black Hole Dark Matter

and ways to find it

Volodymyr Takhistov

University of California, Los Angeles (UCLA)

PBH Dark Matter

- Black holes
 - \circ astrophysical \rightarrow old stars
 - primordial → early Universe [Zeldovich, Novikov, 1967; Hawking, 1971; Carr, Hawking, 1974]

• Why PBH DM ?

- no clear signs of particle DM
- GW astronomy [Bird+ 2016; Sasaki, Thorne+ 1997...]
- generic in many BSM models
- help solve astro puzzles
- already possible in standard cosmology (unlikely)

A New Robust Constraint for LIGO PBHs

PBH Gas Heating

- PBH traversing interstellar medium interacts with gas \rightarrow gas heated
- Main PBH gas heating mechanisms:
 - dynamical friction ("gravity drag")
 - accretion disk photon emission
 - accretion mass (baryon) outflows / winds
- Great testing site: dwarf DM-rich galaxies (Leo T)
- Constrain PBHs if cooling can't balance heating
 → robust, independent of cosmology

[Lu, VT, Gelmini, Hayashi, Inoue, Kusenko, 2020]

PBH Gas Heating

[Lu, VT, Gelmini, Hayashi, Inoue, Kusenko, 2020]

PBH Status (2020)

How to Form PBHs ?

"Standard" PBH Formation

• Big perturbations ($\delta \sim 1$) enter horizon (radiation era) \rightarrow collapse

- Need to tune inflaton potential
 - \rightarrow sensitive to restrictions on field behavior
 - Example: PBH + "string swampland conjectures" [Kawasaki, VT, PRD, 2018]

New General Alternative: Scalar Fragmentation

- Scalars exist and very generic in BSM & top-down theories
 - SUSY models expect O(100) scalars with flat potential, often U(1) charged [Gerghetta+, 1995]

- Post-inflation scalars with attractive self-interactions could break apart due to instabilities
 - complex \rightarrow Q-balls [Coleman, 1985]
 - \circ real \rightarrow oscillons
 - spectator field or the inflaton

*** *fragmentation possibly very generic, if gravity is weakest force* [Kusenko, **VT**, Yamada, Yamazaki, *PLB*, 2019]

Volodymyr Takhistov (UCLA) I ICHEP-2020

simulations [Multamaki, Vilja, 2002]

New General Alternative: Scalar Fragmentation

- Fragments are big (% horizon) and stable
- Fragmentation is random
 → large density fluctuations, <u>unrelated to inflation</u>
- Some rare regions can collapse $\rightarrow PBH$

[Cotner, Kusenko, *PRL*, 2016; Cotner, Kusenko, **VT**, *PRD*, 2018; Cotner, Kusenko, Sasaki, **VT**, *JCAP*, 2019]

New General Alternative: Scalar Fragmentation

Big (a ~ 1) BH spin possible \rightarrow hard to make in usual mechanisms !

[Cotner, Kusenko, Sasaki, VT, JCAP, 2019]

Another General Scenario With Scalars...

PBHs from Bubble Multiverse

- Multi(scalar)-field inflation motivated from top-down theories
 → inflaton potential has complicated shape and many minima
- During inflation inflaton can tunnel to near-by minimum \rightarrow vacuum bubbles
- Bubbles broadly distributed in size → some will contain "baby universe" inside

Bubbles expand and after inflation collapse

→ PBHs with extended mass-spectrum

*** many previous studies [Sasaki, Deng, Vilenkin, Zheng, Yamada...]

PBHs from Bubble Multiverse: A Fresh Look

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, 2020]

PBH DM from Bubble Multiverse: Detected by HSC ?!!

- Extended tail from vacuum bubble PBH allows to indirectly test open DM region
 - → PBH DM compatible with HSC candidate event !

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, 2020]

PBH DM from Bubble Multiverse: One Model for Everything

One generalized model explains all major features simultaneously
 → dark matter, HSC event, LIGO events, seeds of supermassive BHs

upcoming HSC observations will definitively test bubble multiverse PBH DM !

[Kusenko, Sasaki, Sugiyama, Takada, VT, Vitagliano, 2020]

... A Peak Inside the Open DM Window ?

Compact Stars as PBH Laboratories

- Small PBHs can be captured by compact stars (NS/WD) in DM-rich environments [Capela, Pshirkov, Tinyakov, Kouvaris]
- Captured PBH grows inside & destroys star
 → exciting observables !

→ r-process nucleosynthesis, 511 keV, FRBs [Fuller, Kusenko, VT, PRL, 2017] & Viewpoint Highlight by H.-T. Janka

+ solar-mass BHs, new GRBs & microquasars [VT, PLB, 2017; VT, PLB, 2018]

PBHs in Millisecond Pulsars

MSPs spin near mass-shedding limit

- MSP + PBH: star consumed, contracts, spins up
 → neutron-rich ejecta possible
 - *** need more simulation studies
- Great site for **r-process nucleosynthesis** (stellar heavy element factory)

[Fuller, Kusenko, VT, PRL, 2017]

Making Gold with Black Holes

- Heavy element abundance
 - Milky Way contains 10⁴ M
 - UFDs 1 in 10 (Reticulum II) shows

EXCESS [Ji+, Nature 2016]

 \rightarrow can explain with PBH-NS !

[Fuller, Kusenko, VT, PRL, 2017]

Explaining 511 keV in Galactic Center

- Observations (SPI/INTEGRAL) show Galactic Center shines in 511 keV γ-rays
 - consistent w/ e+ annihilation [Beacom, Yuksel, 2006]
 - \rightarrow can explain with PBH-NS !

*** also explained with standard NS-NS mergers [Fuller, Kusenko, Radice, VT, PRL, 2019]

[Fuller, Kusenko, VT, PRL, 2017]

PBH-NS Lab Exotics: Orphan Kilonovae

Kilonova: afterglow from ejecta

- PBH-NS vs. mergers
 - → <u>"orphan kilonova"</u> (w/o merger GWs)

[Fuller, Kusenko, VT, PRL, 2017]

PBH-NS Lab Exotics: Orphan GRBs

• "Standard" short gamma-ray burst progenitor: BH + disk

 \rightarrow disk accreted, binding energy released

If disk forms, could be from PBH-NS
 → <u>"orphan GRB"</u> (w/o merger GWs)

[VT, PLB, 2018]

PBH-NS/WD Lab Exotics: Late Solar-mass BHs

- No astro BHs $\leq 2.5 \text{ M}_{\odot}$
- PBH + NS/WD → <u>new ~0.5-2.5 M☉ BHs</u>

New BH population

 → small PBHs as DM + sub-population of
 ~M☉ BHs made in late Universe

[**VT**, *PLB*, 2018]

Summary

● Renaissance era in PBH research → synergy with multi-messenger astronomy

- Many new ideas for PBH formation and detection
 - \circ PBHs from scalar fragmentation \rightarrow peaked spectrum, big spin possible
 - \circ PBHs from vacuum bubbles \rightarrow broad spectrum, can explain many observables
 - \circ compact stars as PBH laboratories \rightarrow novel signatures

• Aim for definitive statements about general role of PBHs with future studies !