Avenues to New Physics Searches in Cosmic Ray Air Showers

A. Augusto Alves Jr., Oliver Fischer, Maximilian Reininghaus, Ralf Ulrich

Contents

- How much luminosity do cosmic rays and extensive air showers provide (compared to LHC)?
- What's the imprint of Higgsplosion events on EAS?

Introduction

- c.m. energies up to 400 TeV in CR-air collisions
- small fluxes
- composition uncertain
- primary interaction not accessible, only indirect measurement of the extensive air shower

d'Enterria, Engel, McCauley, Pierog, 0806.0944

Counting interactions in EAS

for single showers of fixed energy:

- very close to primary energy dominated by nucleons (→ leading baryon effect)
- pions take over at ~ E₀ / 10
- power law with index $\alpha \approx -2$

zenith angle dependence: compare 70° vs. 0°

- < 20 % change above 1 TeV (lab) for long-lived mesons
- due to shift of critical energy

Inclusive spectra

fold with CR spectrum:

E/eV

greater than primary

Luminosity

$$L = \frac{1}{\sigma} \frac{\mathrm{d}N_{\mathrm{int}}}{\mathrm{d}t}$$
 instantaneous lumi of monoenergetic beam

here:

$$L(>E_0) = \int_{E_0}^{\infty} dE \frac{1}{\sigma(E)} \frac{dN_{\text{int}}}{dE dt d\Omega dA}$$

integrate over whole Earth surface (5 x 10 8 km 2) e.g. L_{nucl}(>10 TeV c.m.) ~ 30 pb $^{-1}$ yr $^{-1}$

for comparison:

LHC run 2: 50 fb⁻¹ yr⁻¹

planned p-O run: 200 μb⁻¹ in 1 week

Part II: "Higgsplosion" in EAS

$$h^*(p^2\gg m_{\rm h}^2)\to n\times h$$
 transition rate growing with $n!$

Degrande, Khoze, Mattelaer PRD 94, 085031 (2016) energy fraction converted to Higgs:

$$\frac{n \times m_{\rm h}}{\sqrt{s}} \gtrsim 0.20$$

- ≥ 100 mb cross-sections reachable?!
- observable impact on EAS?

n.b.: theoretical foundations of the mechanism still under discussion:

Monin, 1808.05810 Khoze, Spannowsky, 1809.11141 Dine, Patel, Ulbricht, 2002.12449

Implementation in CORSIKA 8

$$\sqrt{\hat{s}} = f\sqrt{s_{NN}} = f\sqrt{\frac{s}{14.5}}$$
 energy fraction for Higgs production

$$(1-f)\sqrt{s} \ \ \mathop{\mathrm{remaining \, energy \, for}}_{\text{underlying \, event}}$$

$$n_{\rm h} = \frac{\sqrt{\hat{s}}}{m_{\rm h}(1 + \varepsilon)}$$

fractional kinetic energy, ≤ ~ few

Shower maximum: X_{max}

$$X_{\mathrm{max}} = X_0 + ilde{X}_{\mathrm{max}}$$
 point of first shower development interaction

$$\langle X_0 \rangle = \lambda_{\rm int} = \frac{m_{\rm air}}{\sigma_{\rm inel.}}$$

Shower maximum: X_{max}

- cross-section not known
- study shower development with fixed point of first interaction

- strong dependence on f
- weak dependence on ε

X_{max} fluctuations

- fluctuations caused mainly by standard hadronic interactions
- possibly artifact of oversimplified model implementation
- N = 50 events probably insufficient statistics

Muon energy spectrum

- bump of ~PeV prompt muons from Higgs decay
- overall increase of muon number
- · muon production increasing with f
- decreasing with ε

f	ratio N_{μ}	
	$\varepsilon = 0.1$	ε = 1.0
0.1	1.11	1.08
0.3	1.31	1.21
0.5	1.49	1.38
0.9	1.82	1.82

$$\frac{N_{\mu}^{(\text{Fe})}}{N_{\mu}^{(\text{p})}} = A^{0.1} = 1.50$$

Sphalerons in EAS

BLNV process generated with HERBVI $qq \rightarrow 7 \bar{q} + 3 \bar{l} + 24 W/Z$

similar signature!

Conclusions

- CR provide O(10...100) TeV c.m. interactions
- with tiny luminosity
- large multiplicty Higgs production can have sizeable effect on EAS observables
 - decrease of X_{max} and $\sigma(X_{max})$
 - increase of muon number O(10...50 %)
 - huge increase of high energy muons
- to do: comparisons with data, implications for composition, ν

Backup

Auger X_{max}

Auger muons

Higgsplosion

Higgsplosion

 $h^*(p^2\gg m_{\rm h}^2)\to n\times h$ transition rate growing with **n!**

$$\mathcal{R} = \exp\left[\frac{\lambda n}{\lambda} \left(\log \frac{\lambda n}{4} + 3.02\sqrt{\frac{\lambda n}{4\pi}} - 1 + \frac{3}{2}\left(\log \frac{\epsilon}{3\pi} + 1\right) - \frac{25}{12}\epsilon\right)\right] \qquad \begin{array}{c} \lambda \to 0 \\ n \to \infty \end{array}$$

 $\mathcal{R} \sim 1$ defines Higgsplosion scale \boldsymbol{E}_{\star}

in the limit of

Khoze, Spannowsky, 1707.01531 Khoze et al., 1709.08655

Interaction lengths

