



# Measurement of Space Charge Effects in ProtoDUNE-SP

Michael Mooney (Colorado State University)

On behalf of the DUNE Collaboration

40<sup>th</sup> International Conference on High Energy Physics
July 28<sup>th</sup>, 2020



# Introducing DUNE



- Deep Underground Neutrino Experiment
  - 1300 km baseline
  - Large (70 kt) LArTPC far detector 1.5 km underground
  - Near detector w/ LAr component

- Primary physics goals:
  - v oscillations  $(v_{\mu}/\bar{v}_{\mu})$  disappearance,  $v_{e}/\bar{v}_{e}$  appearance)
    - $\quad \boldsymbol{\delta}_{\text{CP}}, \boldsymbol{\theta}_{23}, \boldsymbol{\theta}_{13}$
    - Ordering of v masses
  - Supernova burst neutrinos
  - BSM processes (baryon number violation, NSI, etc.)





#### DUNE Far Detector (FD)



# The DUNE Far Detector:

Four LArTPC Detector Modules







### **DUNE Far Detector (FD)**











#### **ProtoDUNEs**





- ◆ Two 1-kt "ProtoDUNEs" in charged test beam at CERN (one per FD design)
- ♦ Test of component installation, commissioning, and performance
- ♦ ProtoDUNE-SP operating since 2018; ProtoDUNE-DP since 2019







#### **ProtoDUNEs**





- ◆ Two 1-kt "ProtoDUNEs" in charged test beam at CERN (one per FD design)
- ♦ Test of component installation, commissioning, and performance
- ◆ ProtoDUNE-SP operating since 2018; ProtoDUNE-DP since 2019





# Space Charge Effects (SCE)



- ♦ Looking at first cosmic data, notice offsets in track entry/exit points from top/bottom of TPC
  - Very suggestive of space charge effects (SCE) **as expected** given that ProtoDUNE-SP is located near the surface
  - **Space charge**: build-up of slow-moving Ar<sup>+</sup> ions due to e.g. cosmic muons impinging active volume of TPC (via ionization)





## Impact of SCE



- ♦ SCE leads to E field distortions, distortions in reconstructed ionization position
- ♦ Can bias particle reconstruction in several ways:
  - Location of reconstructed charge from spatial distortions
  - Particle energies from E field distortions (recombination impact)
  - Particle dE/dx from both E field and spatial distortions







# Impact of SCE











# Space Charge @ TPC Faces





- Probe spatial offsets at TPC faces w/ cosmic track entry/exit points
- ◆ SCE **50-75% larger** than initial prediction up to 35 cm
  - Asymmetries likely due to argon flow (not included in prediction)



# 3D SCE Calibration Method





- ♦ Have robust estimation of spatial offsets at TPC faces (2D) using cosmic muon entry/exit points
- ◆ Scale **predicted** 3D spatial distortion map with data/MC scale factors at TPC faces, linearly interpolated across TPC
- ♦ With 3D spatial distortion map in hand, simple to calculate local drift velocity everywhere (arXiv:1910.10430)
  - Then use drift velocity model, v(E), to extract E field distortions



#### E Field Distortion Results







- ◆ Product of 3D calibration: E field map throughout TPC
  - Use this "data-driven" E field map in improved MC simulation
- ♦ Nearly 25% higher E field near cathode than nominal E field
  - Reminder: nominal E field is 500 V/cm
  - That means E field near cathode greater than 600 V/cm!



# SCE Corrections to dE/dx



- ◆ <u>Case study</u>: SCE corrections to particle dE/dx
  - dE/dx vs. residual range used for particle ID important to eliminate bias in this quantity
- ♦ Correct two separate impacts of SCE:
  - **Spatial distortions** correct for spatial "squeezing/stretching" of reconstructed charge (impacts "dx" in calculation)
  - **E field distortions** correct for E field dependence of electronion recombination (reduces "free charge" that drifts to wire)





# SCE Corrections to dE/dx



- ◆ <u>Case study</u>: SCE corrections to particle dE/dx
  - dE/dx vs. residual range used for particle ID important to eliminate bias in this quantity
- ♦ Correct two separate impacts of SCE:
  - Spatial distortions correct for spatial "squeezing/stretching" of reconstructed charge (impacts "dx" in calculation)
  - **E field distortions** correct for E field dependence of electronion recombination (reduces "free charge" that drifts to wire)





#### dE/dx Results: Beam Muons





#### Other Energy Scale Corrections Included

See Richie Diurba's Talk on Energy Scale Calibrations at ProtoDUNE-SP





#### dE/dx Results: Beam Protons





#### Other Energy Scale Corrections Included

See Richie Diurba's Talk on Energy Scale Calibrations at ProtoDUNE-SP





#### Summary



- ◆ Presented first measurement of space charge effects at ProtoDUNE-SP
  - Up to 35 cm of transverse spatial distortions from TPC edges
  - E field distortions as large as 25% of nominal E field near cathode
- ◆ SCE calibration for particle dE/dx presented performs well
- ◆ Results presented here summarized in forthcoming paper
  - "First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform" arXiv:2007.06722 (submitting to JINST)
- ♦ Preparing dedicated SCE publication including improved 3D calibration, systematic uncertainty analysis, and time dependence studies



# Thanks!



