

Heavy-Flavour Lagging in CMS Run 2

Alessandro Calandri - ETH Zürich on behalf of the CMS Collaboration

ICHEP 2020 - 40th International Conference on High Energy Physics

Outline of the talk

 Jet flavour identification and the corresponding calibration of the simulated response to data are a crucial feature for Higgs, SM and BSM physics at the LHC

- b-quarks present in the top-quark decay
- largest Higgs decay branching ratio in $H \rightarrow bb$
- General introduction on CMS heavy flavour tagging
- Algorithm performance and results for resolved and boosted jets
- Highlights on flavour tagging applications to CMS physics measurements and for CMS upgrade projects
- Calibration of b-tagging response from simulation to data discussion of calibration techniques for b-jets, c-jets and light-flavour mistag rate measurement
 - Wrapping-up and conclusions

Unless otherwise specified, all results presented in this talk are published in <u>CMS-</u> <u>BTV-16-002</u>

A CMS collision events with 3 jets, and a multitude of tracks, reconstructed primary and secondary vertices

Heavy flavour tagging

- b-jets stem from the process of hadronisation of b-quarks B-hadron properties used to identify b-jets
- Iarge mass, few GeV
- long lifetime, $\beta \gamma c \tau$, order of mm
 - displaced tracks and secondary vertices
- Iarge momentum (around 70%) carried by B-hadrons
- ▶ presence of direct and indirect semileptonic decays, i.e. $b \rightarrow \mu \nu X$ (BR $\sim 12\%$), $b \rightarrow c \rightarrow \mu \nu X$ (BR $\sim 10\%$)

Inputs from low-level taggers exploiting features of the b-jet decay topology

- impact-parameter of tracks associated to jets, presence of secondary vertices
- combination of high-level observables and low-level properties (from particle-flow candidates) included in DNN
- strong push for development of Deep Neural-Network based techniques for CMS b-tagging LHC Run 2 legacy results

Tagger algorithms for resolved jets

Input variables discriminating between light-flavour-jets, c-jets and b-jets

- track impact parameters, SV features (mass, flight-distance),...
- Deep Neural Network algorithm (DeepCSV) trained on multi jet and top quark pair events making use of high-level features and providing b vs light-flavour and b vs c-jet separation
 - c-tagging is an additional challenge given the c-jet properties
 - c-discrimination made possible due to the multi class output structure of DeepCSV → CvsL and CvsB discrimination

DNN

architecture

for DeepCSV

and DeepJet

ETH zürich

4

Tagger algorithms for resolved jets - improving architectures

- Strong push to further improve b-tagging performance by exploiting more performant taggers for Run 2 legacy results
- DeepJet being developed as a successor of DeepCSV
 - inclusion of low-level input features from particle-flow candidates (properties of charged and neutral particles and secondary vertices)
 - significant performance gain over DeepCSV coming from usage of larger set of low-level inputs, less restrictive track selection and a suitable (more complex) NN architecture

Tagger algorithms for boosted jets Several physics measurements explore high pt regime to mitigate overwhelming QCD background

- collimated b-jets reconstructed as AK8 jets significant improvement in sensitivity results due to boosted taggers - extensively used in several CMS measurements
- Two main algorithms developed by CMS for boosted regime:

- DeepDoubleB and DeepAK8 dedicated DNN trainings using boosted features providing distinct probabilities for bbVs light-flavour, top, QCD
- large gain wrt previous algorithms (DoubleB) based on BDT training successful mass decorrelation to avoid background sculpting, either via the loss function (DeepDoubleB) or by using adversarial training (DeepAK8)

Highlights on b-tagging in physics and upgrades

Several CMS physics analyses and upgrade projects benefit from improved b-tagging performance

Flavour tagging for resolved and boosted topologies plays a fundamental role in the observation of the Higgs boson decay to bottom quarks <u>PRL 121</u>, <u>121801</u> and in the inclusive high pt ggH \rightarrow bb search <u>CMS-</u> <u>HIG-19-003</u>

CMS Run 2 results

7

CMS Upgrade for HL-LHC

Adding timing information for CMS MIP Timing Detector improves b-tagging characterisation and increases overall performance by allowing to recover performance in high pile-up regime

- timing information used for track selection
- additional results available <u>CMS-TDR-020</u>

Calibration on data - overview of scale factor methods.

- Calibration techniques derive correction factors to ensure the performance (efficiency) of heavy-flavour tagging in simulation is the same as in data
 - Several topologies selected for extraction of scale factors enriched in b-jets, c-jets, light-flavour jets
 - <u>b-jet calibration</u>: ttbar, μ-enriched, <u>c-jet calibration</u>: W+c, light-flavour jet calibration: QCD multijet
 - majority of calibration methods calculate SF for a fixed cut on the discriminator values, full b-tagging discriminant shape correction also available for DeepCSV and DeepJet algorithms

Full set of calibration methods to ensure redundancy and usage of orthogonal phase-spaces (μ -enriched, ttbar, ..) \rightarrow exploit combination of results as input to physics measurements

Examples of combination for b-jet calibrations to probe consistency of SF results

AK4 - Calibration for b-jets

- Usage of discriminating observables based on event topology to mitigate presence of light-flavour jet polluting the phase space for the efficiency measurements on b-jets
- tt-based calibrations:
 - Tag&Probe (semileptonic tt): probe-jet to determine efficiency of b-jets in data and simulation
 - Kinematic fit (dileptonic tt): usage of BDT with kinematic variables to discriminate jets in the tt system from ISR/FSR jets
 - <u>µ-enriched calibrations</u>:
 - ptRel, System8, LT methods using semileptonic b-decays momentum of the muon wrt jet axis larger for b-jets and powerful for b-jet discrimination - usage of ptRel templates from simulation

AK4 - Calibration for c-jets

 W+c topology - W+c production mainly due to processes in which W and c are opposite sign, dominant background (W+qq) balanced OS/SS rate

10

- OS/SS subtraction provides large enrichment in W+c with a signal purity of around 60%(80%) for W→ev (µv)
- efficiency measurements in data and in simulation as a function of jet pt used to extract SF's for different working points
- Additional method making use of c-jets from ttbar semileptonic events using a kinematic reconstruction to target c-jets stemming from the W decay d, \bar{d}

AK4 - Calibration for light-flavour jets

- Inclusive multi-jet events default tagger but use only negative impact parameter values and SV's with negative flight distance
- Distribution should be approximately symmetric for lightflavour jets - non-zero values of IP/SV flight distance coming from resolution effects

11

Wrapping-up & conclusions

^r Heavy flavour tagging is a crucial ingredient for measurements and searches at the LHC

- Presented overview of algorithm developments in CMS for b/c-jet identification for resolved and boosted topologies
 - several new algorithms developed for CMS Run 2 legacy measurements based on better understanding of deep learning techniques and jet topology features
 - ► excellent level of background discrimination has definitely paid off very useful for searches and measurements with b/c-jets in the final state and for CMS flagship analyses such as VH→bb observation with 2016+2017 data, first VH→cc search with 2016 data, inclusive boosted search in bb final state
 - significant work on the upgrade side has also allowed to achieve excellent performance by making use of novel detector features embedded in the b-tagging chain (e.g. timing information in MTD)
- Calibration of b/c-tagging algorithms and light-flavour mistag rate measurements are also an essential features of heavy flavour tagging
 - calibration analyses for b-, c-jet and light-flavour measurements are complex and have largely benefitted from combination of results expected from several methods targeting different phasespaces

Additional slides

2D c-tagger working points & algorithm definitions 14

