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Detection of muons with the Compact Muon Solenoid (CMS)

‣Muon in CMS are tracks with curved trajectory, bent in radial plane by a B = 3.8 T solenoidal field 

‣Muon tracking is performed with:
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Longitudinal view of a quarter of the inner tracker

Longitudinal view of a quarter of the muon system

2. Muon system (gaseous detectors): 
‣Drift Tubes (|𝞰| < 1.2)


tracking detector with trigger capabilities 
‣Cathode Strip Chambers (0.9 < |𝞰| < 2.4) 

tracking detector with trigger capabilities 
‣Resistive Plate Chambers (|𝞰| < 1.9)


mostly used in trigger

1. Silicon inner tracker: 
‣PIXEL: 4 layers (BPix) - 3 layers (FPix)   ≥ 2017 

              3 layers (BPix) - 2 layers (FPix)   ≤ 2016 
‣STRIP: 4 layers (TIB) - 6 layers (TOB)  barrel 

              3 layers (TID) - 9 layers (TEC)  endcap

— PIXEL 
— STRIP double sided 
— STRIP single sided
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A complete study of high-energy muons with 2016 and 2017 data is documented in: JINST 15 (2020) P02027 

—

https://doi.org/10.1088/1748-0221/15/02/P02027
https://doi.org/10.1088/1748-0221/15/02/P02027
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Physics object performance: scale and resolution
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Measurement of biases in the muon pT scale

‣ High-pT muons have a small curvature (𝑘) ⇢ little distortions in the estimation of 𝑘 can largely bias pT 

‣At high energy , biases are mostly due by constant shifts of 𝑘 due to residual misalignments of tracker and muon system 

‣ Scale consistency between data and MC is measured with the Generalized Endpoint Method: 
1. The 𝑘 = q/pT distribution of muons (from dimuon events) with pT > 200 GeV is plotted for data and simulation 
2. For simulation (which has no scale bias), an artificial curvature bias 𝑘b is injected “in steps” to the original q/pT distribution 
3. For each injected 𝑘b  step a binned 𝜒2 test is performed to compare the data and (distorted) simulation q/pT distributions 
4. The curvature bias in data is selected as the value minimizing the 𝜒2 distribution as function of 𝑘b 

‣ Bias overall less than 10% (mostly consistent with 0), with the exception of the high |𝞰| region
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Muon momentum resolution

‣ Either evaluated using cosmic muons: 
‣Muons traversing CMS close to the beamline get reconstructed separately in the upper and lower halves of CMS 
‣The q/pT relative residual between the upper and lower reconstructed muons is a measure of the momentum resolution 

‣ Either by using pp collision events: 
‣Selecting dimuons from boosted Z decays and fitting the Z invariant mass distribution 

‣ Data/MC agreement generally good; main exception: a discrepancy around~15% for |𝞰| > 1.6  (2017 dataset)
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Physics object performance: effi ciencies
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Muon reconstruction and identification efficiencies

‣ Efficiencies are measured with a cut and count extended tag-and-probe technique: 
‣TAG: muon satisfying high-pT ID criteria and very tight isolation cut, matched with single muon trigger 
‣PROBE: tracker muon, with very tight isolation cut (+ potentially cuts on the inner track, e.g. # of layers, vertex proximity) 
‣PAIR: no upper cut on on invariant mass, plus add cuts (e.g. pT balance) to select non resonant DY events 

‣ The muon component of the reconstruction efficiency and the full high-pT ID selection are probed 
‣RECO: pT dependent inefficiency for |𝞰| > 1.6 as large as 3%  - efficiency in barrel is flat vs pT, with a data/MC SF ~99% 
‣ ID: efficiency is ~98% (data) with a ~1% data/MC discrepancy - flat as function of pT both in barrel and endcaps
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Trigger efficiency

‣ The trigger efficiency is measured exploiting two different strategies: 
1. With the extended tag-and-probe method 
2. Using datasets collected with non-muonic triggers (e.g. e-gamma triggers) 

‣ Overall efficiency varies  with pT between ~92% to ~82%  data/MC SFs vary between ~98% and ~90% 
‣ Inefficiency, data/MC SF and pT dependence mostly due by Level-1 trigger 
‣Results computed with different approaches agree well with each other
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Summary

‣ High-momentum muons have peculiarities that make them differ from lower energy ones 
‣To maximize physics performance at high pT, dedicated algorithms are implemented in the CMS muon reconstruction 

‣ The LHC Run-2 provided ideal conditions to probe the high-energy regime 
‣Because of the √s increase to 13 TeV, as well as because of the increased statistics 

‣ Using Run-2 data, high-momentum muons in CMS were studied with unprecedented level of detail 
‣The outcome of such studies is documented in JINST 15 (2020) P02027 

‣ Overall very good performance was observed: 
‣Efficiencies are generally high, with small pT dependence in all the probed momentum range (but for Level-1 trigger) 
‣Up to rather large |𝞰|, no significant scale biases are observed 
‣Using muon information in the pT measurement improves the resolution w.r.t. a tracker-only measurement 
‣Resolution is probed both using comics and collision data, the disagreement from simulation is 15% or (generally) less 
‣Empirical methods to tag showers recorded in the muon system were developed 
‣Shower tagging methods show reasonable data/MC agreement and were used to parametrize all performance figures 

‣ All this work also highlighted areas were things can be further improved ⇢ we are working hard to 
prepare for Run-3 and achieve even better performance!
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Thank you for your attention!
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Questions?
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also offline at: carlo.battilana@cern.ch

mailto:carlo.battilana@cern.ch
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Backup
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Tune-P performance in simulated samples and real data

‣ Tune-P is optimized (and its performance is studied) with simulations: 
‣Considering different alignment scenarios (and alignment errors - APE) of tracker and muon system 
‣Comparing its performance with the one of different refits (e.g. inner-tracker or global), also in events “with showers” 

‣ The consistency of the Tune-P decision choice in data and simulation is then validated 
‣Using dimuon events from data which satisfy dedicated ID criteria (high-pT ID) and have a pT > 200 GeV 
‣Comparing with MC events (DY, diboson, t-t, single-top MC) satisfying the same selection as for data
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Results shown for the muon system barrel as an example
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Muon identification efficiency (more details)

‣ The high-pT selection criteria was retuned over Run-2 to feature a ~1.5% (1%) increase in data (MC) 

‣ Its efficiency was measured, with the extended tag-and-probe method, w.r.t. reconstructed global muons 
‣ Including N-1 measurement of the efficiency of single cuts 
‣Studying performance in events with showers 

‣ The selection efficiency is ~98% (data) with a ~1% data/MC discrepancy 
‣ In presence of showers, efficiency degrades of ~1% in barrel, and data/MC agreement worsens 
‣No significant pT dependence is observed (incl. events with showers)
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Level-1 trigger efficiency (shower-based measurement)

‣ Trigger efficiency is measured exploiting two different strategies: 
1. With the extended tag-and-probe method 
2. Using datasets collected with non-muonic triggers (e.g. e-gamma triggers) 

‣ In case 2., the Level-1 trigger efficiency is also computed: 
‣Assuming that p dependence is only due to the increased probability of generating showers at higher momentum 
‣Computing the efficiency as function of # showers and convoluting it with the shower probability vs p to get “𝜀 vs p”
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