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Detection of muons with the Compact Muon Solenoid (CMS)

» Muon in CMS are tracks with curved trajectory, bent in radial plane by a B = 3.8 Tsolenoidal field

» Muon tracking is performed with:

1. Silicon inner tracker:
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2. Muon system (gaseous detectors):
» Drift Tubes (|| < 1.2)
tracking detector with trigger capabilities
» Cathode Strip Chambers (0.9 < |p| < 2.4)
tracking detector with trigger capabilities
» Resistive Plate Chambers (|n| < 1.9)
mostly used in trigger
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A complete study of high-energy muons with 2016 and 2017 data is documented in: JINST 15 (2020)
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Reconstruction of high-momentum muons



Muon object reconstruction overview

More details in: JINST 13 (2018) P06015
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2. Muon system standalone tracks
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4. Inner tracker + standalone tracks --» global muons (refitted)
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4. Inner tracker + standalone tracks --» global muons (refitted)
5. Inner tracker tracks + DT/CSC segments --* tracker muons
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4. Inner tracker + standalone tracks --» global muons (refitted)

5. Inner tracker tracks + DT/CSC segments --* tracker muons
+ Dedicated high-pr refits (more in next slide)
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5. Inner tracker tracks + DT/CSC segments --* tracker muons
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4. Inner tracker + standalone tracks --» global muons (refitted)

5. Inner tracker tracks + DT/CSC segments --* tracker muons
+ Dedicated high-pr refits (more in next slide)

+ Muons included in the CMS Particle-Flow (PF) event reconstruction (not covered today)

+ Muon identification: + Muon isolation:
- based on muon track variables (e.g. # of hits in inner track) - counting energy deposits in tracker and calorimeters
- using “"external” quantities (e.g. proximity to primary vertex) - based on PF quantities (charged/neutral hadrons, photons) n
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» For muons of at least few hundreds of GeV, muon chambers contribute to the py measurement
» Butin some cases (e.g. in presence of showers) out-of-the-box pr from global muons may be suboptimal

» Different track-fit strategies were developed to achieve optimal performance:

» Inner-track fit:

use only information from the inner tracker Tune-P decision strategy

» Track plus first muon station (TPFMS): step1: Picky vs DYT
combined fit of tracker track and hits from innermost muon station Ty
» Picky Fit: step2:  Inner-track vs step1 choice
starting from a global muon, in chambers with many hits/layer, reject A hoi
ones less compatible with the muon track fit step3: TPFMS V:S step2 choice
» Dynamic Truncation (DYT): v )
| | . e Tune-P choice
starting from the inner track, truncate fit if extrapolated track falls “far
from segments in muon stations (i.e. because of large energy loss in iron) Tune-P choice or Inner-track pr < 200 GeV?
yes AN no
» Final track-fit type chosen by Tune-P algorithm: Innertrack Tune-P choice

» Highly favours inner-track fit at low momentum (pr < 200 GeV)
» At high pr, selects among different refits based on track quality parameters (i.e. y2/# d.o.fand o(pr)/pr)
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Measurement of biases in the muon py scale

[*ICMS DP-2020/040

» High-pr muons have a small curvature (k) - little distortions in the estimation of k can largely bias pr

» At high energy, biases are mostly due by constant shifts of k£ due to residual misalignments of tracker and muon system

» Scale consistency between data and MC is measured with the Generalized Endpoint Method:
1. The k = qg/pr distribution of muons (from dimuon events) with pr> 200 GeV is plotted for data and simulation
2. For simulation (which has no scale bias), an artificial curvature bias ks is injected “in steps” to the original q/pr distribution
3. For each injected ky, step a binned y2 test is performed to compare the data and (distorted) simulation g/pr distributions
4. The curvature bias in data is selected as the value minimizing the 2 distribution as function of k,

» Bias overall less than 10% (mostly consistent with 0), with the exception of the high |n| region
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Muon momentum resolution
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» Either evaluated using cosmic muons:

» Muons traversing CMS close to the beamline get reconstructed separately in the upper and lower halves of CMS
» The g/pr relative residual between the upper and lower reconstructed muons is a measure of the momentum resolution

» Either by using pp collision events:
» Selecting dimuons from boosted Z decays and fitting the Z invariant mass distribution

» Data/MC agreement generally good; main exception: a discrepancy around~15% for || > 1.6 (2017 dataset)
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Muon reconstruction and identification efficiencies

» Efficiencies are measured with a cut and count extended tag-and-probe technique:

» TAG: muon satisfying high-pr ID criteria and very tight isolation cut, matched with single muon trigger
» PROBE: tracker muon, with very tight isolation cut (+ potentially cuts on the inner track, e.g. # of layers, vertex proximity)
» PAIR: no upper cut on on invariant mass, plus add cuts (e.g. pr balance) to select non resonant DY events

» The muon component of the reconstruction efficiency and the full high-pr ID selection are probed
» RECO: pr dependent inefficiency for [g| > 1.6 as large as 3% - efficiency in barrel is flat vs pr, with a data/MC SF ~99%
» ID: efficiency is ~98% (data) with a ~1% data/MC discrepancy - flat as function of pr both in barrel and endcaps
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Trigger efficiency
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» The trigger efficiency is measured exploiting two different strategies:
1. With the extended tag-and-probe method
2.Using datasets collected with non-muonic triggers (e.g. e-gamma triggers)

» Overall efficiency varies with pr between ~92% to ~82% data/MC SFs vary between ~98% and ~90%
» Inefficiency, data/MC SF and pr dependence mostly due by Level-1 trigger
» Results computed with different approaches agree well with each other




Summary

» High-momentum muons have peculiarities that make them differ from lower energy ones
» To maximize physics performance at high pr, dedicated algorithms are implemented in the CMS muon reconstruction

» The LHC Run-2 provided ideal conditions to probe the high-energy regime
» Because of the \/s increase to 13 TeV, as well as because of the increased statistics

» Using Run-2 data, high-momentum muons in CMS were studied with unprecedented level of detail
» The outcome of such studies is documented in JINST 15 (2020) P02027

» Overall very good performance was observed:
» Efficiencies are generally high, with small prdependence in all the probed momentum range (but for Level-1 trigger)
» Up to rather large ||, no significant scale biases are observed

» Using muon information in the pr measurement improves the resolution w.r.t. a tracker-only measurement

» Resolution is probed both using comics and collision data, the disagreement from simulation is 15% or (generally) less
» Empirical methods to tag showers recorded in the muon system were developed

» Shower tagging methods show reasonable data/MC agreement and were used to parametrize all performance figures

» All this work also highlighted areas were things can be furtherimproved - we are working hard to
prepare for Run-3 and achieve even better performance!



https://doi.org/10.1088/1748-0221/15/02/P02027
https://doi.org/10.1088/1748-0221/15/02/P02027

Thank you for your attention!



Questions?

also offline at: carlo.battilana@cern.ch
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Tune-P performance in simulated samples and real data

Results shown for the muon system barrel as an example
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» Tune-P is optimized (and its performance is studied) with simulations:
» Considering different alignment scenarios (and alignment errors - APE) of tracker and muon system
» Comparing its performance with the one of different refits (e.g. inner-tracker or global), also in events “with showers”
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» The consistency of the Tune-P decision choice in data and simulation is then validated
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» Using dimuon events from data which satisfy dedicated ID criteria (high-pr ID) and have a pr > 200 GeV
» Comparing with MC events (DY, diboson, t-t, single-top MC) satisfying the same selection as for data




Muon identification efficiency (more details)

.
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» The high-pr selection criteria was retuned over Run-2 to feature a ~1.5% (1%) increase in data (MC)

» Its efficiency was measured, with the extended tag-and-probe method, w.r.t. reconstructed global muons
» Including N-1 measurement of the efficiency of single cuts
» Studying performance in events with showers

» The selection efficiency is ~98% (data) with a ~1% data/MC discrepancy

» In presence of showers, efficiency degrades of ~1% in barrel, and data/MC agreement worsens
» No significant pr dependence is observed (incl. events with showers)




L1 efficiency

Level-1 trigger efficiency (shower-based measurement)
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» Trigger efficiency is measured exploiting two different strategies:
1. With the extended tag-and-probe method
2. Using datasets collected with non-muonic triggers (e.g. e-gamma triggers)

» In case 2., the Level-1 trigger efficiency is also computed:
» Assuming that p dependence is only due to the increased probability of generating showers at higher momentum
» Computing the efficiency as function of # showers and convoluting it with the shower probability vs p to get e vs p”




