The Alignment of the ATLAS Forward Proton Detectors

40th International Conference on High Energy Physics *Session: Operation, Performance and Upgrade of Present Detectors* 30 July 2020

Jesse Liu (University of Chicago) On behalf of *ATLAS Forward Detectors*

ATLAS Forward Proton

It's not every day we install & operate a new class of LHC instrument

Today's talk: detector performance

Overview of AFP spectrometer Reconstruction of forward proton Detector alignment methods Data quality & efficiencies

Run 190644, Event 51422085 Time 2011-10-09, 16:29 CEST

 $\gamma\gamma \rightarrow ee @ 7 \text{ TeV event display } [1506.07098]$

 $pp \rightarrow p + (\gamma\gamma \rightarrow ee/\mu\mu) + p$

Without AFP can only see this

-New: directly observe intact protons with AFP

ATLAS Forward Proton

Both arms installed in 2017 for standard high-luminosity LHC data-taking New analysis object opening exciting program of diffractive & photon collision physics

ATLAS Forward Proton system: full diagram

Close-up: AFP Silicon Tracker and Time-of-Flight detectors

The idea of a TeV proton spectrometer

Local interplane alignment

Proton leaves clusters measured at x position relative to plane edge

Ideal alignment

Cluster positions relative to plane edge can be different

before interplane alignment

Global alignment: motivation & idea

MAD-X beam propagation simulation

Beam based alignment: the principle

https://journals.aps.org/prab/pdf/10.1103/PhysRevSTAB.15.051002

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 051002 (2012)

FIG. 4. The four-stage beam-based alignment procedure for collimator i. The reference collimator is aligned to form a reference cut in the beam halo (1). Collimator i is aligned (2), followed by a realignment of the reference collimator (3). Finally, collimator i is opened to its position in the hierarchy (4).

Beam based alignment: the practice

Sharp signal spike in BLM when beam is probed

FIG. 4. The four-stage beam-based alignment procedure for collimator *i*. The reference collimator is aligned to form a reference cut in the beam halo (1). Collimator *i* is aligned (2), followed by a realignment of the reference collimator (3). Finally, collimator *i* is opened to its position in the hierarchy (4).

LHC operations: 20 May 2017

Innovative technique: in situ dimuon calibration

In situ dimuon calibration: fit & shift residuals

In situ dimuon calibration: systematic uncertainties

The road towards precision

Comprehensive evaluation of variations for initial conservative 300 micron systematic

Track reconstruction efficiency & data quality

Efficiencies: crucial to correct (unfold) AFP detector effects – first time evaluated for AFP Tag a track in one station, probe fraction of events with track matched |x_{Near} – x_{Far}| < 2 mm Far stations have systematically lower efficiency than Near due to showering
Data quality: diagnostic to check runs with problematic detector – vetoed in Good Runs List

EPILOGUE

AFP expands our repertoire to probe the microcosm

Summary

This talk

We are pioneering strategies for AFP detector alignment & performance characterisation critical for opening a novel program of ATLAS analyses

See more proton tagging in ATLAS @ ICHEP

"The ATLAS Forward Proton Time-of-Flight Detector System"

By Karel Cerny Thu 30 Jul 09:15am [direct sequel to this talk]

"Measurements of soft-QCD and diffractive processes with ATLAS"

By Rafał Staszewski Thu 30 Jul 10:40am [Strong interactions and hadron physics]

"Measurements of photon-photon fusion at ATLAS"

By Mateusz Dyndal Thu 30 Jul 10:50am [Top quark and electroweak physics]

[ATLAS Run 2 Event Displays]

"The Z boson candidate is reconstructed in a beam crossing with 65 additionally reconstructed vertices from minimum bias interactions...The invariant mass of the two muons is 87 GeV."

Key challenges

QCD very challenging

Track modelling from soft

LHC as photon collider is laboratory for extreme QED

Schwinger (1952)

Schwinger 1952: particle production from vacuum if $B \ge 10^9$ T, $E \ge 10^{18}$ V/m Hadron colliders: $B \gg 10^{14}$ T, $E \gg 10^{23}$ V/m, Magnetar neutron stars: $B \sim 10^{11}$ T Test QED with new probes at extreme regimes \Rightarrow 'who ordered that' surprises?