

Small-Strip Thin Gap Chambers and Electronics Performance for the Muon Spectrometer Upgrade of the ATLAS Experiment

Mohsen Naseri, on Behalf of the ATLAS Muon Collaboration

ICHEP 2020 29 July 2020

Introduction

A sequence of LHC upgrades are scheduled during Long Shutdown (LS) periods.

- Instantaneous luminosity expected to increase up to 5 to 7 times higher than nominal following LS3 in 2027.
- Expect to collect approximately 3000 fb⁻¹ of data by the end of LHC operations in 2037.

Protons physics Commissioning

ATLAS Upgrade projects(LS2)

New Small Wheel
LAr calorimeter

Fast tracker

ATLAS Upgrade projects(LS3)

Muon System

Inner tracker

LAr and Tile calorimeters

DAQ and trigger systems

Trigger Rate & Identification Limitations

Online Muon Identification: Current Wheel Chambers will lose efficiency at high hit rates due to higher instantaneous luminosity.

• Current Muon system only uses middle wheel for triggering; it would not be able to hold such rate.

Trigger limitations: Lowest unprescaled muon trigger is dominated by fake muons (90%) in the endcap region which waste the bandwidth of the HLT.

ATLAS-Muon Spectrometer Upgrade

Solution: The New Small Wheel(NSW) upgrade will replace the current Small Wheel of the ATLAS Muon Spectrometer to

handle tracking and triggering problems.

It is designed to:

• Significantly reduce the fake Level-1 muon triggers

- Precisely reconstruct muon tracks
 - 95% on-line track reconstruction efficiency

Strict Requirements for the new small wheel:

- Excellent online angular spatial resolution; less than 1 mrad
- Operate efficiently at Run-3 and beyond it

New Small Wheel

New Small Wheel Upgrade

The NSW is composed of 16 trapezoid sectors, each sector being made of two detector technologies:

- The Micromegas (MM) designed for precision tracking
- The small-strip Thin Gap Chambers (sTGC) optimized for triggering

Each sector is made of 2 sTGC wedges and 2 MM wedges.

- The sTGC wedges are made up of 3 quadruplets modules
- Each quadruplet is a multiplet with 4 sTGC layers

New Small Wheel

Sector

NSW Structure

sTGC detector

Micromegas detector

Mainly for triggering, also for good tracking

- Good timing resolution with short drift time for electrons
- Small strip pitch (3.2 mm)
 - less than 1 mrad trigger track resolution

Mainly for precise tracking, also for triggering

- Small strip pitch (~0.4 mm)
- Fast drift time (~100 ns)

It will reach space resolution < 100 µm independent of track incidence angle.

It will provide a \sim 7 fold increase in rejection rate for fake muon triggers.

sTGC Construction Sites

sTGC quadruplets (each with 4 layers) are assembled at independent construction sites located in 5 countries.

sTGC Production Sites TRIUMF, Carleton University, 1/2QS3 Canada QL2 McGill University China **Shandong University** QS2 Pontifical Catholic University of Chile, Chile Federico Santa Maria Technical QS1 University infirmation Wedge Weizmann Institute of Science, 1/2QS3 Israel Tel Aviv University QL1 NRC Kurchatov Institute PNPI, Russia QL3 Petersburg Nuclear Physics Institute QL3 QL2

sTGC Modules

A Small-Strip Thin Gap Chamber (sTGC) is a multiwire proportional chamber operated in quasi-saturated mode. It is made up of 2 segmented cathodes and one plane of anode wires.

The sTGC chambers are operated with a gas mixture of CO2 and npentane vapour and at a voltage of 2.8 kV. Ionization products induce current on wires, pads and strips as **three readout channels**:

Wires: Coarse azimuthal muon coordinate

Strips: Precision muon track reconstruction and 1mrad angular resolution; analog readout

Pads: Define NSW trigger region of interest(ROI) and coarse tracking; digital readout

sTGC Construction

Half-gap production

Wire winding of cathode boards

Gap closing and testing

Doublet assembling and testing

Quadruplet assembling

Cosmic-ray testing

Wedge assembly

sTGC Quality Tests @ Construction Sites

- HV tests at different stages (single gap, doublet, quad) to identify leakage currents, shorts, sparks;
- X-Ray scan of single gap to measure gain uniformity and probe internal structure of gaps;
- Electrical connectivity test of readout channels after adapter board assembly;

ATLAS NSW Preliminary QL1 # 8, single gap # 2

sTGC Cosmic Tests

Tests are conducted to check:

- Hit maps
- 2D efficiency maps
- Resolution and misalignment corrections
- Noise measurement

Preliminary 2D efficiency of strip channels of a QS3 gap

ATLAS NSW Preliminary					
0-	1145	2032	2082	1153	- 7500
	3257	5475	5702	3280	
7 -	4078	6866	7167	3620	
m -	3836	6589	6425	3131	- 6000
4 -	4529	7582	7536	3721	
٦ -	4777	7167	6049	3322	
9 -	4044	5255	6105	3301	
۲-	3547	5796	6680	3223	- 4500
ω -	2938	4760	5252	2562	
6 -	3149	5692	5160	2703	
21	2794	7095	5928	2889	- 3000
= -	3260	4584	4308	2262	5000
12	2600	4414	3789	2641	
13	3916	2605	6110	2501	
44	1551	2187	2880	1376	- 1500
15	1047	1491	1398	882	
16	424	603	941	1346	
	ò	i	2	3	

Number of cosmic muons counted in a QS1 gap during a period of approximately 13 hours.

Wedge Assembly and Integration @ CERN

Gluing: 3 quads are assembled into wedges

Faraday cage assembly

Integrate sTGC and MM into sectors and wheel assembly

Install the electronics and sector integration(sTGC and MM)

Quality Controls @ CERN

Quality control carried out at every step of assembly:

- Ensure no damage during shipment
- Readout connectivity test
- Stability test under high radiation with 20 kHz/cm² (at CERN; GIF++ facility)
- CERN GIF++ facility

- Noise measurements with integrated electronics(wedges)
- Long-term HV test(wedges)
- Measurement of misalignment using x-rays (wedges)

HV test @ CERN

GIF++ operates with 137Cs source of 14 TBq that radiates gamma rays.

sTGC Performance in Muon Test Beam at CERN

Test with muon beam

- NSW detectors read out using the VMM amplifier-shaper-discriminator ASIC
- VMM on custom front-end-boards (FEB) designed for sTGC readout

sTGC Spatial Resolution, Test Beam at CERN

sTGC strip spatial resolution as a function of the applied high voltage; measured with final VMM prototype.

The strip spatial resolution is obtained from the distributions of the exclusive and inclusive residuals of the reconstructed tracks. $\sigma_{sTGC} = \sqrt{\sigma^{inc.} \times \sigma^{exc.}} = 95 \mu m$

Inclusive residuals for a layer of interest are defined as the position difference between the layer space point and the position of a track reconstructed using the space points of all 3 layers. The **exclusive residuals** are obtained the same way but reconstructing the track without the space point of the layer of interest.

sTGC Trigger

- Pad layers staggered to make "logical' pad towers
- Muon trajectories define pad trigger towers
- 3 out of 4 layers with a hit required for single wedge trigger
- Final decision based on geometrical matching between the two wedge triggers
- Strips from both sTGC wedges and MM hits used for online track angle measurement

Summary

- The NSW is essential for ATLAS to maintain high trigger efficiency and momentum resolution in the high pile-up and high radiation environment expected during high luminosity phase of the HL-LHC.
- The installation of front-end electronics on the wedges is going well.
- Test beam and irradiation tests are done for the NSW electronics.
- Electronics performance is in really good shape.
- sTGC quadruplet production is underway at all construction sites.
 - It is complete for side A and well under way for side C.
- Integration at CERN is progressing with chambers and electronics:
 - 4 small sTGC wedges completed with electronics.
 - Sector 12 and 14 installed.
 - NSW-A small sector installation has resumed in July.
 - All NSW-A large wedges have to be ready to install in sectors by end of January 2021.
 - NSW-C has to be complete by October 1, 2021.

NSW-A with 2 small sectors installed

Back-up Slides

NSW Electronics & DAQ Data Flow

Latency from IP to SL limited to 1075 ns

PCBs:

pFEB/sFEB(sTGCpad/strip front-end board)
MMFE8(Micromegasfront-end board)
L1DDC(Level-1 Data Drive Card)

Pad Trigger

Router

ADDC

FELIX(Front-End LInkeXchange)

Trigger Processor

Radiation tolerant ASICs:

VMM (amplifier, shaper, digitizer)

Readout ASIC

Trigger Data Serialiser(TDS)

Address Real Time (ART)

Slow Control Adapter (SCA)

GigaBitTransceiver (GBTX)

sTGC Performance

