Large size multi-gap resistive Micromegas for the ATLAS New Small Wheel at CERN

Dimitris Fassouliotis on behalf of ATLAS MUON Collaboration

ICHEP 31/7/2020

Content

- Introduction
- Chamber construction and quality control on production sites
- > Installation
- Quality assurance and commissioning

Introduction: The New Small Wheel

Current Small Wheel → CSC and MDT (tracking), TGC (trigger)
NSW →

Micromesh Gaseous Structure (Micromegas) primarily tracking Small strip Thin Gap Chambers (sTGC) primarily trigger

- ➤ Main ATLAS upgrade during the Long Shutdown 2 (Phase-I)
- Designed to operate also at HL-LHC
- \rightarrow Angular coverage: 1.3< $|\eta|$ <2.7
- > 10 meter diameter Located at z 7m from IP

NSW Motivation

- > Reduce substantially single muon trigger fake rate
- Maintain excellent efficiency and resolution of tracking at very high rates
- ➤ 16 active layers → redundancy for tracking and pattern recognition

Introduction: NSW layout

- ➤ NSWs preserve the geometry and segmentation of present SWs
- > 8 Large and 8 Small sectors with Micromegas and sTGC on each side
- Installed on mechanical support which combines the NJD steel disk (shielding, flux return) and aluminum structure (spokes) bolted on it
- > Spokes support the detectors and hold the alignment bars
- ➤ Each sector consists of 2 sTGC and 2 Micromegas wedges
- > The two Micromegas wedges are placed on an aluminum support (spacer frame) to make a double wedge

Introduction: Micromegas Operational principle

ATLAS Micromegas characteristics

- NSW Micromegas are resistive for spark protection. Cu strips are covered by a Kapton layer with resistive screen pattern (graphite) printed on it. HV is applied on the resistive layer.
- ➤ The mesh is integrated in the drift panel structure and not coupled with the pillars
- > Strip width 300 μm (pitch 425-450 μm)
- > The mesh is at ground potential
- \triangleright Drift gap (5 mm), HV_{drift}= -300V, E_C = 600 V/cm
- \triangleright Amplification gap (128 µm), HV_{RO} = 570 V, E_A = 45 kV/cm
- ➤ Baseline gas mixture: 93% Ar 7% CO₂

Chamber production: Layout

- Each Micromegas Double
 Wedge is composed by 2
 wedges with 4 layers each
- 4 η layers for measuring the η coordinate
- → 4 stereo layers with inclined strips (+/-1.5°) to provide 2nd coordinate
- ➤ Each wedge has 2 modules (quadruplets) 1 & 2

Construction of the Micromegas modules

Large Module 1 (LM1): France CEA, Saclay

Large Module 2 (LM2): Greece, Russia Thessaloniki.

Dubna, CERN

Small Module 1 (SM1): Italy/INFN Pavia, Rome1, Rome3,

Frascati, Lecce, Cosenza, Napoli.

Small Module 2 (SM2): Germany

Munich, Freiburg, Würzburg, Mainz.

- > 128 modules of 4 different types
- > Surface /module /layer 2-3 m²
- ➤ Total area larger than 1200 m² → The largest Micromegas project

Chamber production: Construction

Cathode (*drift*) and anode (*read-out*) planes built on sides of five panels stiffened through the use of honeycomb structures

Work flow

Start to finish for building a module (quadruplet) 10-12 weeks

Chamber production: Quality control

QA/QC per panel and / or quadruplet

- > Thickness
- Planarity
- Gas tightness
- > Alignment
- > HV stability
- > Efficiency
- Gain homogeneity

LM1 example of RasFork alignment measurement

Chamber production: HV stability

End 2017 → Issues of HV Stability with first production MM NSW Quadruplet
High currents and discharges - concern for possible permanent damages

Jan 2018 → R&D focused on the cause of sparks and possible means of protection

Spark causes

- Residual material humidity
- Residual ionic contamination
- Mesh mechanical imperfections
- Other imperfections

➤ Jan 2019: Evidence of discharge happening close to the boundary between Pyralux overlay region and the active area

➤ Reduce relative humidity inside chamber ≤ ~15%

Polishing of the mesh

Insufficient spark suppression due to low resistivity in localized spots

Spark protection

- > Act on the resistive layer
- ➤ Introduce HV filter (under study)
- Modify gas mixture (under study)
- ➤ Increase HV granularity (under study)

Passivation of a region along the sides of the PCB through deposit of a thin layer of araldite, in order to increase the minimum resistivity of the active area

Detailed quality control of PCBs targeting imperfections

Thorough cleaning/drying of panels prior to assembly

Local grinding seems also promising

Assembly, integration and commissioning

Integration and commissioning activities are performed at CERN in parallel in two buildings

BB5 (integration)

- Components tests
- Mechanical assembly
- > Integration
- > Elx test and calibration
- Cosmic rays test

191 (installation)

- Installation on NSW
- Services connection
- Surface commissioning

All the information about the integration in **Theo Vafeiadis talk**All the information about GIF++ activity in **Lorenzo Pezzoti's talk**

Performance and commissioning of HV

Nominal HV is 570 V --- several tests to ensure stability

- > 128 HV sections per sector
- ➤ Test are performed by ramping the HV and recording the current & the spike rate
- Modules which present some issues are send for irradiation scan to GIF++
- ➤ If nominal HV is not stable for some section, connect to hospital line (4 additional HV channels per sector with reduced HV values)
- ➤ Finalize the HV configuration and confirm efficiency from cosmic data
- > The same HV configuration is validated at 191 after installation

Fraction of sections set to

Nominal value 90%

Reduced value 9%

Disconnected 1%

HV Efficiency at BB5 cosmic stand (η-strips)

Sector Installation

Grabbing of the sector

Set orientation to 22.5 deg

Adjusting center of gravity

Installation Fixation on NSW A

Dimitris Fassouliotis iCHEP 2020

Moving towards the wheel

Ready for survey

Services connection and validation

Connections and systems validation

- > Survey and alignment
- Cooling
- **→** Gas
- > Low voltage
- ➤ High voltage
- > Read out fibers
- ➤ Monitoring of electronics

Humidity measurement at the exit of the detector gas lines

Water input and output temperatures

Temperatures on detector

Electronic components monitoring

Commissioning: Data Acquisition

The NSW DAQ architecture lies on the newly introduced readout scheme of ATLAS

It uses the final FELIX based readout system for all the data taking

Read-out Validation 65536 read out channels / sector

Read out for LHC Run III, detector quality control

Read out for HL-LHC

Trigger path

The data acquisition system is fully functional for the needs of the commissioning

Commissioning: Baselines

Baselines are studied in order to

- ➤ Identify and correct misalignment between chamber and board strips causing sorts between neighboring channels (making them unusable)
- Check for noisy or dead channels
- ➤ Baselines are measured again at 191 after installation to ensure that no board or connector was moved and evaluate the noise conditions on NSW
- > Estimate the dead and noisy channels

Comparison at integration and after installation

Commissioning: Different sets of data taking

In order to

- Check electronics response
- Identify dead or noisy channels
- Check detector performance

Different kind of data taking runs are performed

- Noise runs varying thresholds, trigger frequency
- Pulse runs varying pulse height, frequency, channels
- Cosmic runs varying thresholds

Threshold setting per channel

Dimitris Fassouliotis iCHEP 2020

Commissioning: Cosmic data

Track projection

All the information on cosmic results in Gabriel Rabanal Bolanos's talk

Out of 48 layers from 6 micromegas sectors integrated so far

80% have efficiency above 90% and 20% have efficiency above 80%

Example of Efficiency map

Commissioning: Trigger path

Trigger path test for micromegas

- ➤ Configuration of ADDCs
- Connectivity tests
- Coincidence logic validation with test pulses
- > Trigger processor validation with test pulses (both Micromegas and sTGC)

Example of connectivity test

Test pulse example

Dimitris Fassouliotis iCHEP 2020

<u>Summary</u>

- > ATLAS NSW is (a) the largest ATLAS phase I upgrade and (b) the largest Micromegas project curried out so far.
- > Considerable effort has been invested to understand and overcome the issue of HV instability, leading to significant improvement of the behavior of large area resistive Micromegas.
- > Construction and integration of Micromegas detectors continue at full speed after the restrictions due to Covid-19 were relaxed.
- > The average layer efficiency of all sectors built so far exceeds 90%.
- Most of the commissioning procedures are finalized and are performed successfully in routine mode.
- > The level of dead (or noisy) electronic channels is well below 1% (2%).
- > Most of the modules and all the electronic components for the 16 sectors of side A are available. Two sectors have been already installed and are currently commissioned. Therefore, the goal of having side A ready in Spring 2021 is achievable.
- The successful accomplishment of NSW side C in time depends also on international restrictions due to Covid-19.

Thank you

Back up slides

Similar topics at iCHEP 2020

Presentations

- Integration and commissioning of ATLAS New Small Wheel Micromegas detectors with electronics at CERN, **Theodoros** Vafeiadis
- Irradiation and Gas studies of production chambers for the ATLAS-NSW MM, Lorenzo Pezzotti
- Cosmic results with the final Micromegas sectors for the ATLAS Muon upgrade, Gabriel Rabanal Bolanos

Posters

- Production and Test of Micromegas boards for the ATLAS New Small Wheel project, Luigi Longo
- Geometrical precision alignment of the Micromegas detectors for the ATLAS New Small Wheel upgrade, Manisha Lohan

Chamber production: PCB quality control

Dedicated lab at CERN for PCB QA/QC

- ➤ Visual inspection
- > Electric tests
- > Cu strips and pillar pattern
- ➤ Edge precision and straightness
- ➤ Absolute dimensions and shape
- Pillar height
- > Strip capacitance
- > Resistivity mapping

Pillar height mapping as a function of the board type

Chamber production: HV stability

- ➤ The method of passivation was applied to all modules starting from one point, to mitigate the HV stability issues
- ➤ As a result there is a small decrease of the active area in the overlapping small large sector regions, but a better overall efficiency.

LM1: Example of efficiency in cosmic stand - eff>95%

SM2 Module HV Stability

LM2: Example of efficiency in cosmic stand

Integration: Electronic boards

Each Micromegas double-wedge

- > Has 65536 read out channels
- > Combines 4 different types of elx boards
- > 128 MMFE8 -- MicroMegas Front-End
- > 16 L1DDC -- Level-1 Data Driver Card
- > 16 ADDC -- Address in Real Time Data Driver Card
- ➤ 16 LVDB -- Low Voltage Distribution Board

All the cards are fully tested on the bench before installation on the detector, at integration site and on NSW

Commissioning: Threshold setting

For every channel a different threshold is set

- ➤ VMM is the first level readout having 64 channels
- > Each VMM has a slightly different response
- For each VMM a global threshold is set
- ➤ Then for each channel the threshold can be further calibrated up to 30 ADC counts (trimming)

Status of side A

Detector Components	Status
Small sector modules	32/32
Large sector modules	28/32
MMFE8	2048/2048
L1DDC	256/256
ADDC	256/256
LVDB	256/256

Detector installation	Status
DWs assembled	13/16
DWs integrated with elx	8/16
DWs validated	7/16
Sectors installed on NSW	2/16

- ➤ Most of the hardware is already available
- ➤ Integration and tests can be performed in 2 weeks
- ➤ Goal for installation and commissioning is also 2 weeks
- ➤ Given that works can be done in parallel the estimated time for each sector is 2 weeks

- ➤ One test sector has already gone through the installation and surface commissioning o validate the procedures
- > Two installed sectors are being surface commissioned at the moment