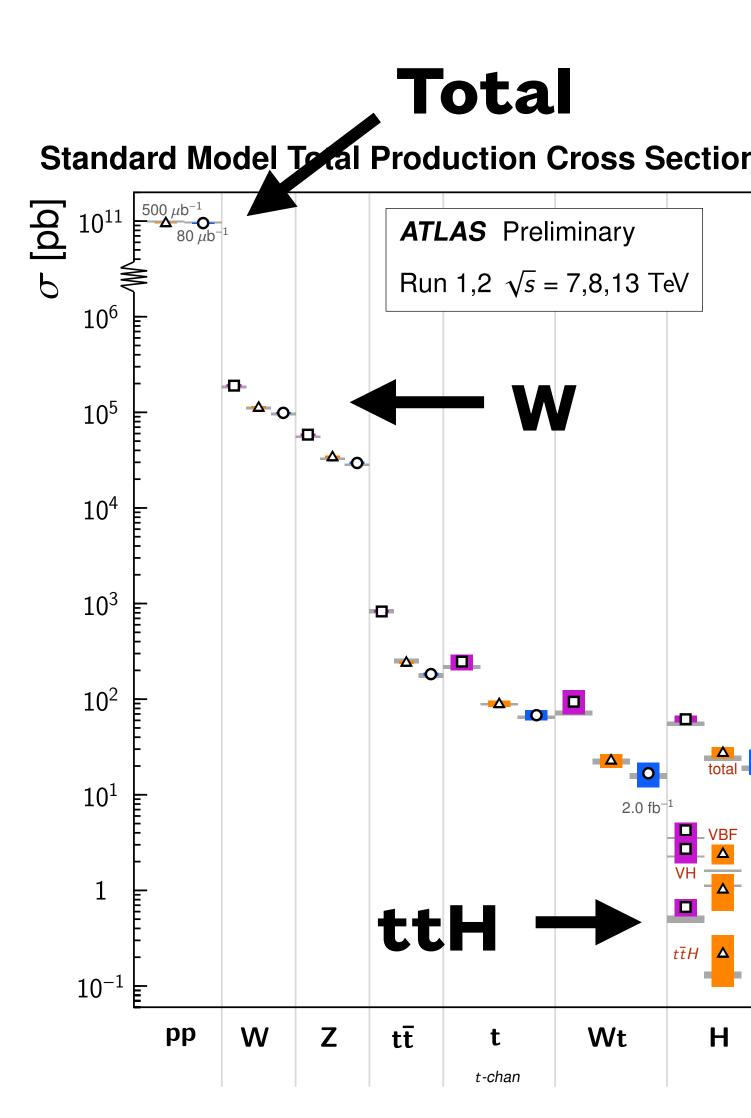
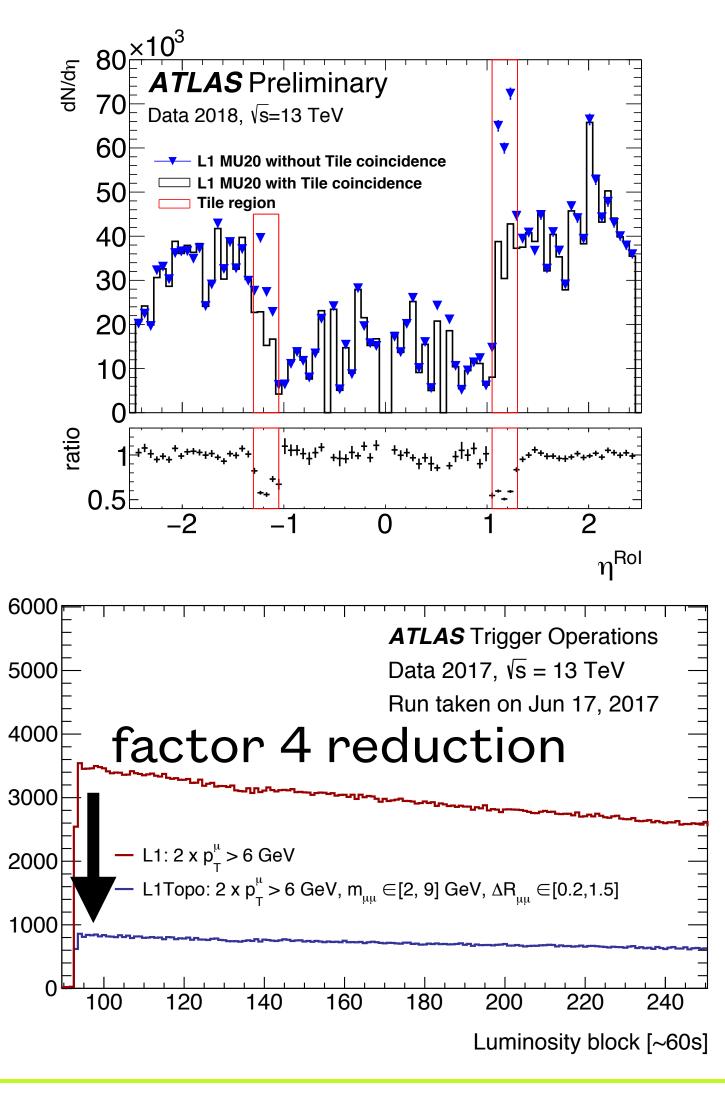

from ATLAS import trigger if coolPhysics == True: trigger.doStoreEvent() else: pass

Triggering in the ATLAS Experiment


making sure the needle ends up in the haystack

Introduction


- The **Trigger** system of an experiment at a hadron collider has a critical role, unfeasible to reconstruct and/or store every collision
- Need to reject orders of magnitude of soft QCD before reaching the interesting electroweak / high-p_T / BSM regime
- Two-level system to reduce
 40 MHz collisions → 100 kHz L1 → 1 kHz HLT → storage
- To put rates in context @13 TeV and 2e34 cm⁻²s⁻¹ we expect ~600 Hz of W(→lep), and ~0.01 Hz of ttH
- The trigger needs to decide in < 2.5µs (at L1) and < 500 ms average (at HLT) which events to store and which to reject.
 Compared with up to 30 sec for full offline reconstruction

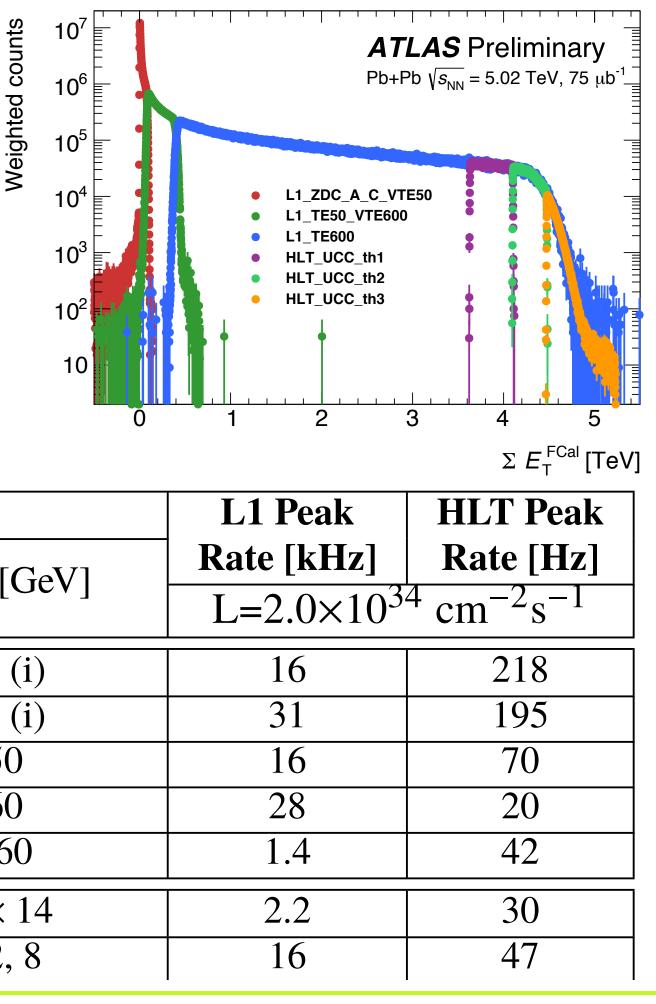
Level-1 trigger

- L1 hardware-based trigger (40 MHz \rightarrow 100 kHz)
 - Output rate limited by detector readout
 - Use coarse information from calorimeter (L1Calo) and muon (L1Muon) systems to define ($\eta \times \phi$) Region-of-interest (Rol) for feature extraction
 - Simple selection on different signatures: muon, (isolated) calorimeter energy deposits consistent with electron/photon, tau, jet, MET
 - Several improvements in Run 2
 - Muon endcap calorimeter coincidence
 - Updated filters and noise cuts of L1Calo hardware logic
- **L1Topo** provides more sophisticated selections (angle, mass, ...)
 - Critical for triggers such as di-tau and b-physics

Rate [Hz]

High-level trigger

- **HLT** software-based trigger (100 kHz \rightarrow 1 kHz average) • Full-granularity data available in a region-of-intereset (Rol) or full
 - event
 - Selection very close to offline, including also multivariate selections, e.g. for b-tagging and tau identification
 - Latency O(s), max average processing time ~500 ms
- Up to ~1500 HLT selection chains defined, out of which 300 physics primaries
- Managed to keep the same kinematic selection on trigger particle candidates throughout Run 2 with help of improved identification, pile-up rejection methods, etc



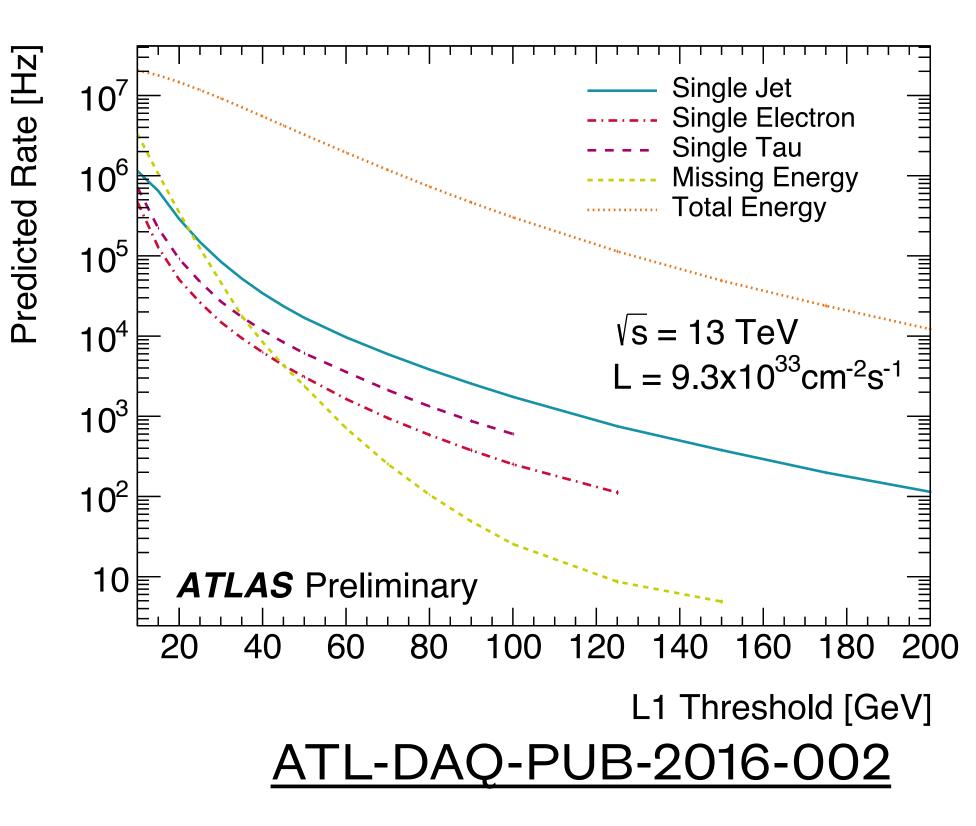
ATLAS Trigger menu @2e34

- Trigger decision is based on a set of conditions (object p_T , identification, isolation, multiplicity), that define the **Trigger menu**
 - documented in ATL-DAQ-PUB-2019-001
 - Highest rates at HLT for single muon/electron, ditau, MET
 - Same p_T threshold for electron/muon at HLT
- Also documented dedicated menus for heavy-ion, low-µ dataset (µ≈2), special runs

Trigger	Typical offline selection	Trigger Sele	L1 Peak	HLT Peal	
		L1 [GeV]	HLT [GeV]	Rate [kHz]	Rate [Hz]
				$L=2.0\times10^{34} \text{ cm}^{-2}\text{s}^{-1}$	
	Single isolated μ , $p_{\rm T} > 27 {\rm GeV}$	20	26 (i)	16	218
	Single isolated tight $e, p_{\rm T} > 27 {\rm GeV}$	22 (i)	26 (i)	31	195
Single leptons	Single μ , $p_{\rm T} > 52 {\rm GeV}$	20	50	16	70
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	28	20
	Single τ , $p_{\rm T}$ > 170 GeV	100	160	1.4	42
	Two μ , each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×14	2.2	30
	Two μ , $p_{\rm T} > 23, 9 {\rm GeV}$	20	22, 8	16	47

Trigger menu design

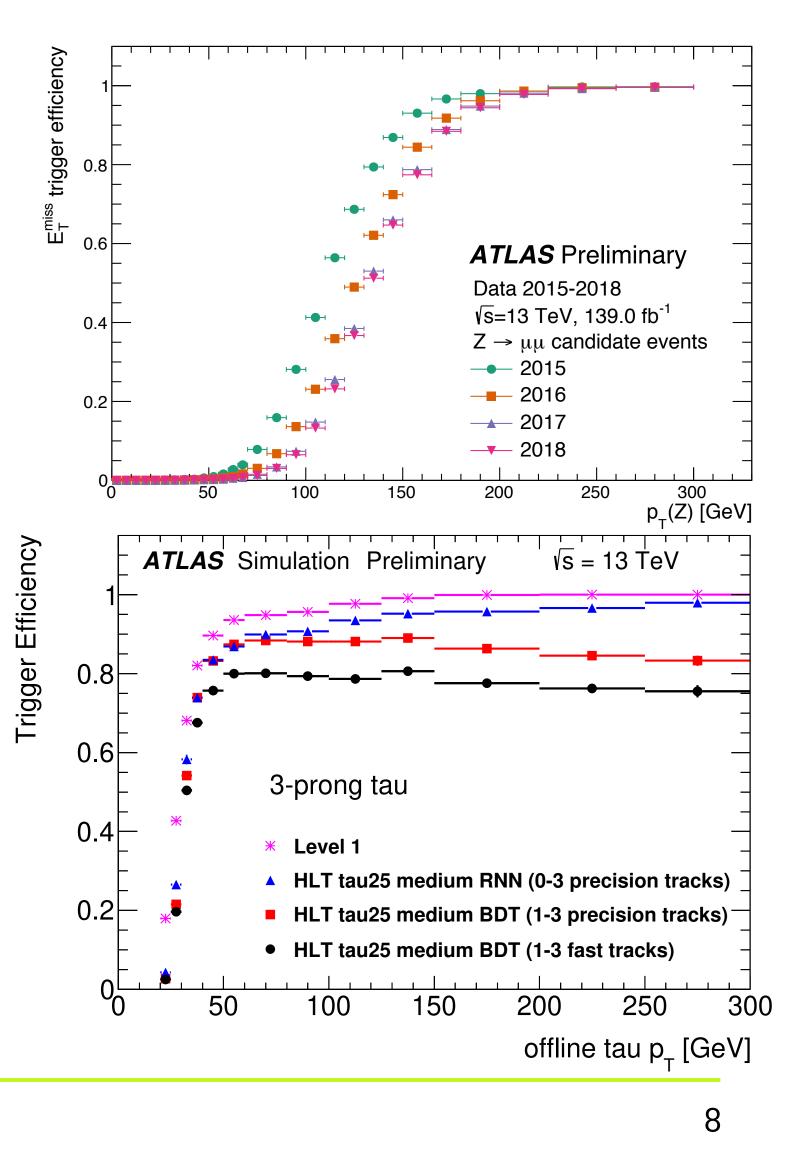
- Designing the menu is a **balance** between analysis requests (store all the physics!) and system constraints
 - Peak L1 rate below 100 kHz (detector readout)
 - Average HLT rate ~1 kHz (storage and prompt) reconstruction constraints)
 - Decide within 500 ms in average (available CPU in the HLT farm)
- Want to store only events that are actually going to be used, want online and offline reconstruction algorithms to be as close as possible



- Main **limitation** for:
- Ditau, multijet, b-physics
- Single jet, single photon
- Multi-bjet, low-p_T electrons
- MET, multijets

Predicting trigger rates and CPU

- Rate and CPU can be predicted for triggers in development making use of <u>Enhanced Bias</u> (EB) data
 EP detected detects with O(1M) events, enhanced in big
 - EB data: a dataset with O(1M) events, enhanced in high- $p_{\rm T}$ objects, selected using only L1 triggers
 - By knowing the L1 prescales the selection bias can be removed with event weights
 - Provides an **unbiased** sample with sufficient statistical precision in the high- p_T /high-multiplicity regime
- Reprocessing enhanced bias data with a new trigger menu allows to predict rates and CPU for triggers in development

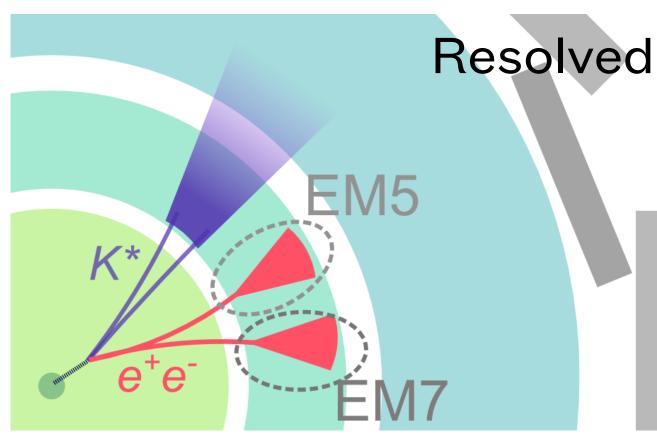

7

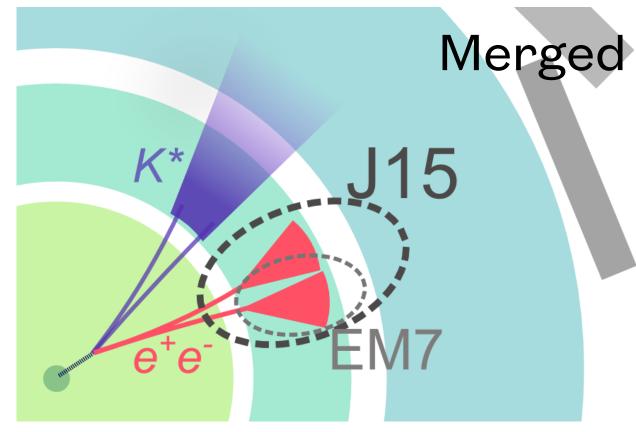
Performance highlights

- Offline **MET** threshold kept at ~200 GeV across all Run 2 thanks to constant improvements to MET reconstruction
 - 2015 cell: E_T^{miss} from calorimeter cells above noise threshold
 - 2016 mht: E_T^{miss} from calibrated jets
 - 2017 pufit: E_T^{miss} from hard-scatter clusters, sorted out from pileup based on a threshold based on total event energy
 - 2018 pufit+cell

Improved tau identification

- Feed tracks to a recurrent neural network (RNN) Includes a O-track mode to recover inefficiencies from track finding in the first pass of HLT tracking
- Better performance allowed to improve the efficiency while keeping the same rate

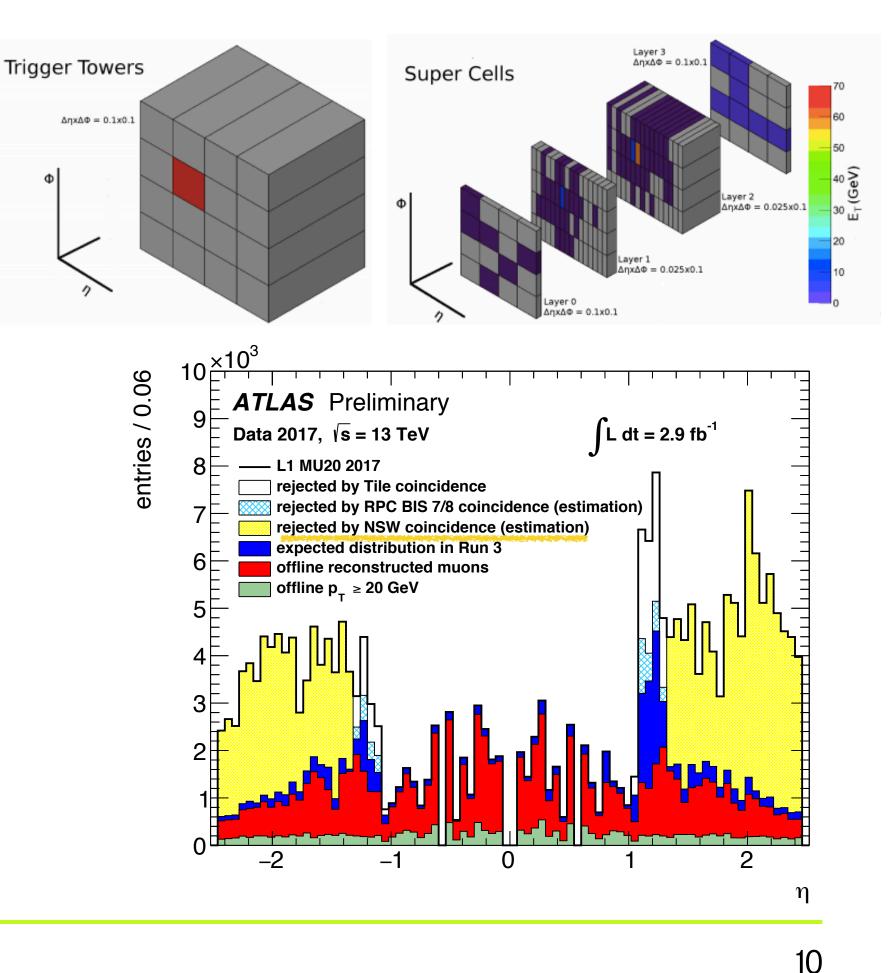


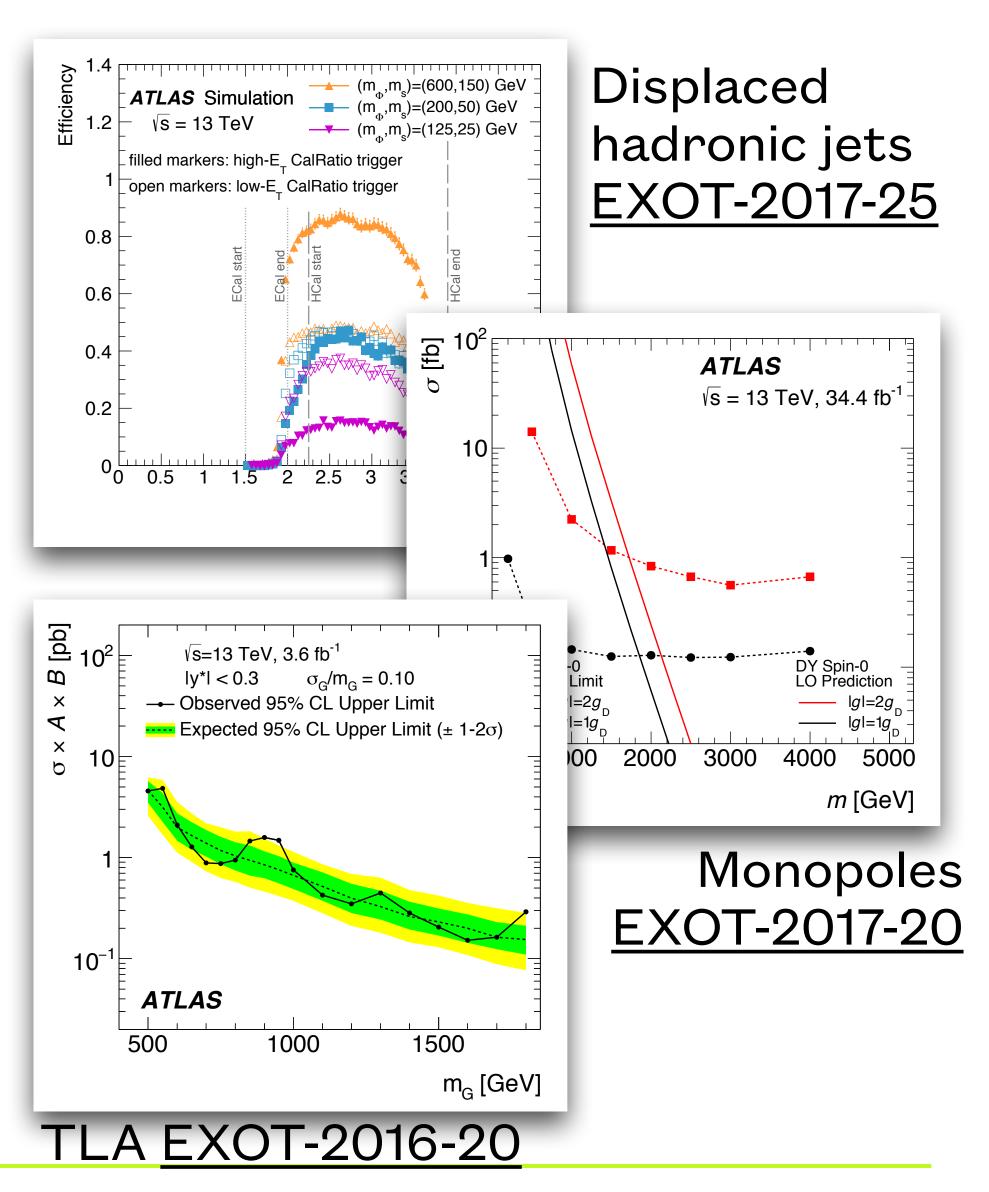

Performance highlights

- Dedicated $B \rightarrow K^*ee triggers$, targeting resolved and also merged dielectron final states
- L1
 - Resolved: require two separated electrons with $E_T > 7/5$ GeV and m(e,e) < 9 GeV
 - Merged: require one electron with $E_T > 7$ GeV close to a jet with $E_T > 15 \text{ GeV}$
 - Both would have too high rate, and require additionally 1 muon with $p_T > 6$ GeV or 2 muons with $p_T > 4$ GeV
 - **Unseeded**, run HLT algorithm on every L1-accepted event

• HLT

- select two 5 GeV electrons, originating from a common vertex and 0.1 < m(e,e) < 6 GeV
 - additional muons at HLT if the L1 seed requires muons
- extremely CPU-demanding, requires to run low-p_T electron reconstruction on every EM Rol

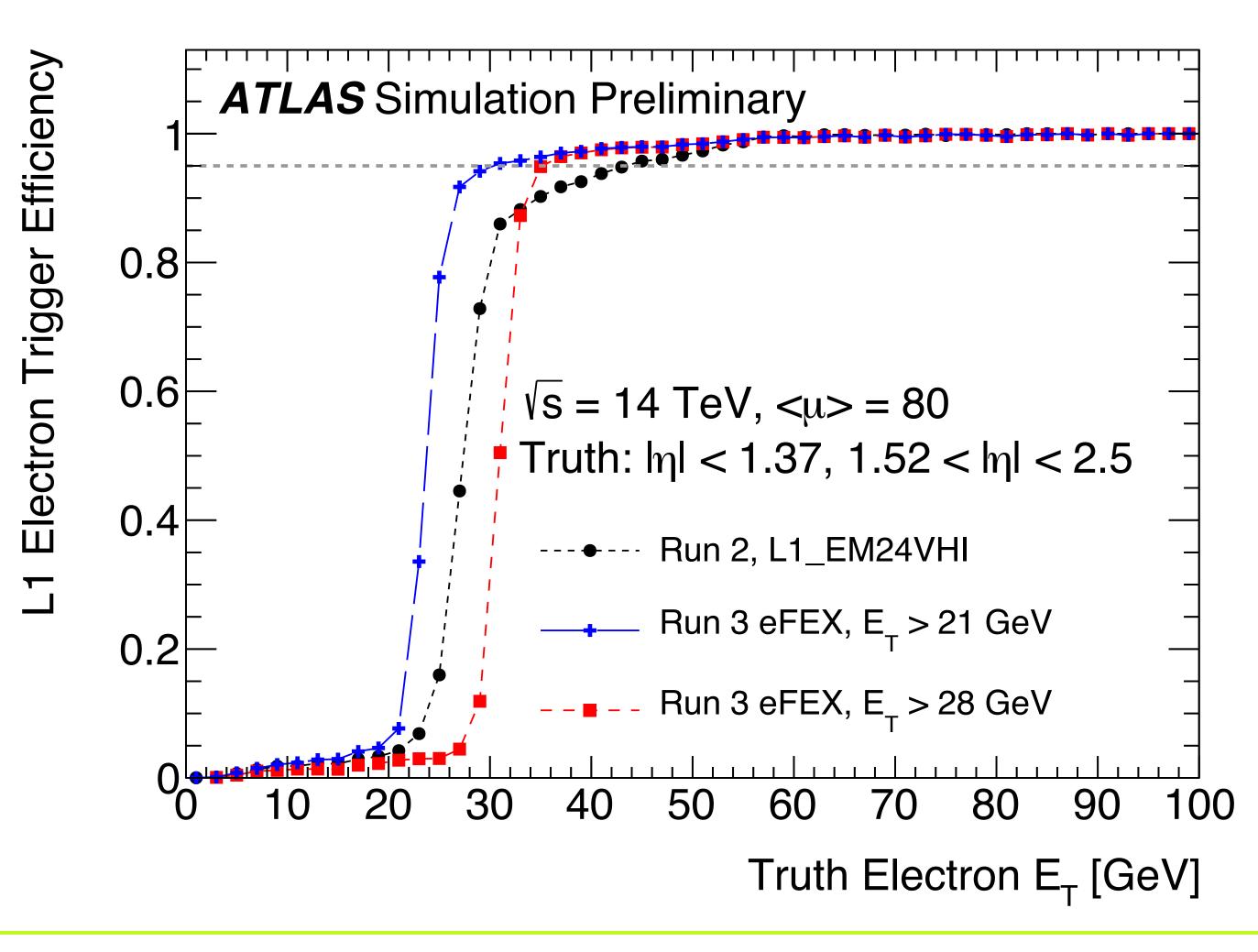



Run 3, trigger phase-lupgrades

- Several upgrades will improve the trigger performance towards Run 3
- The two upgrades with most impact on the trigger:
- L1Calo upgrade: new readout allows for improved granularity in the trigger: 1 old tower = 10 new super cells
 - Largest gain from reduction in isolated electron rates, and improved turn-on
- L1Muon: upgraded endcap can reduce by ~40% the muon rate. Allows for spatial and angular coincidence with the muon BW

Conclusions

- Excellent performance of the trigger system allowed very stable data-taking by the ATLAS detector during Run 2
- Constant evolution and improvements of triggers ensured a nearly-constant offline threshold despite the large increase in instantaneous luminosity and pileup
- The triggers system (both hardware and software) is being upgraded to improve its capabilities towards Run 3
- Many great physics results made possible thanks to creative and custom triggers!

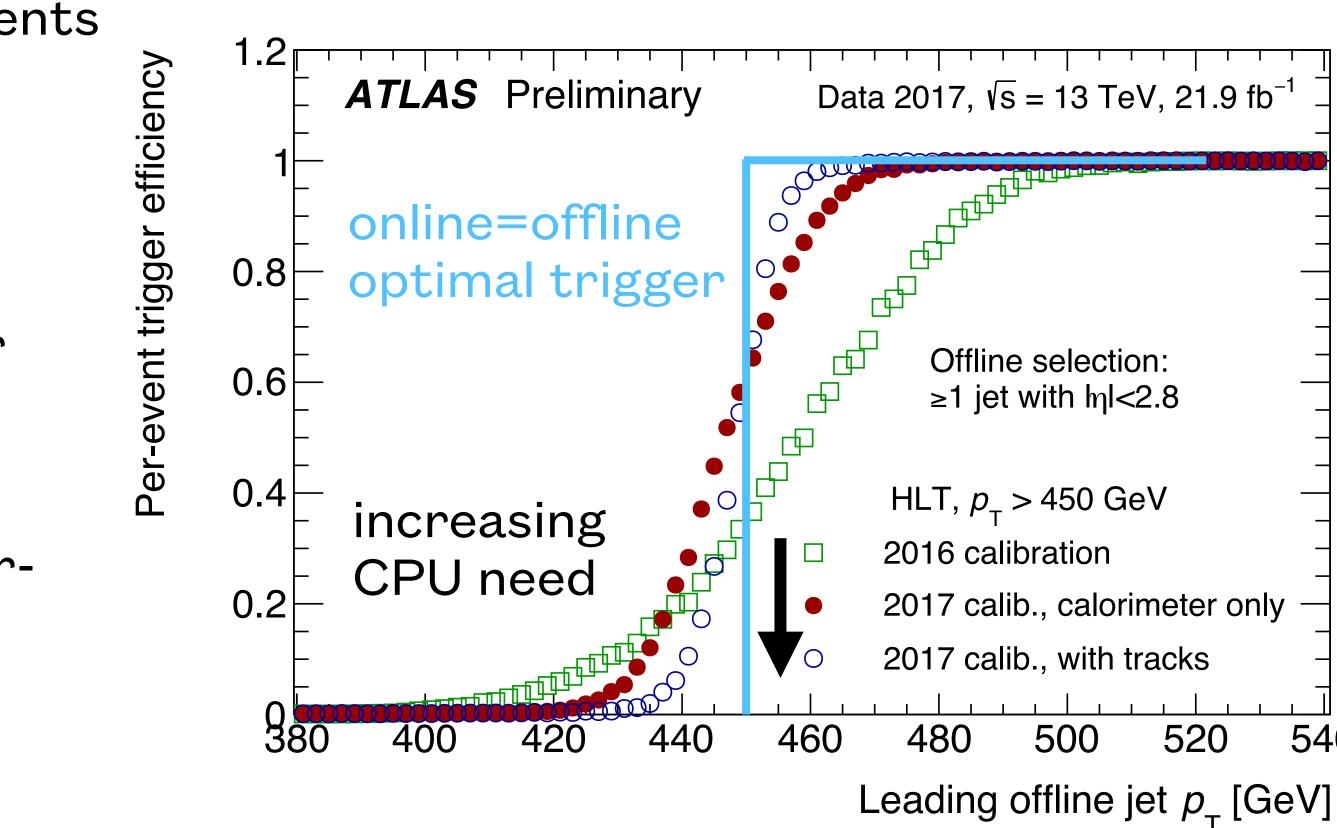


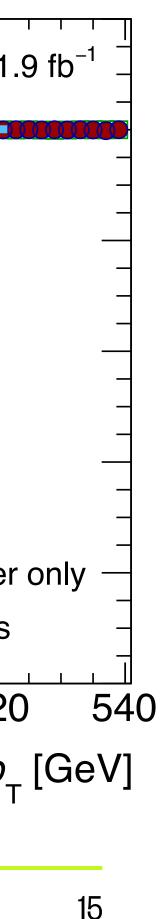
12

Run 3 electron turn-on

ATLAS Trigger menus (pp, HI)

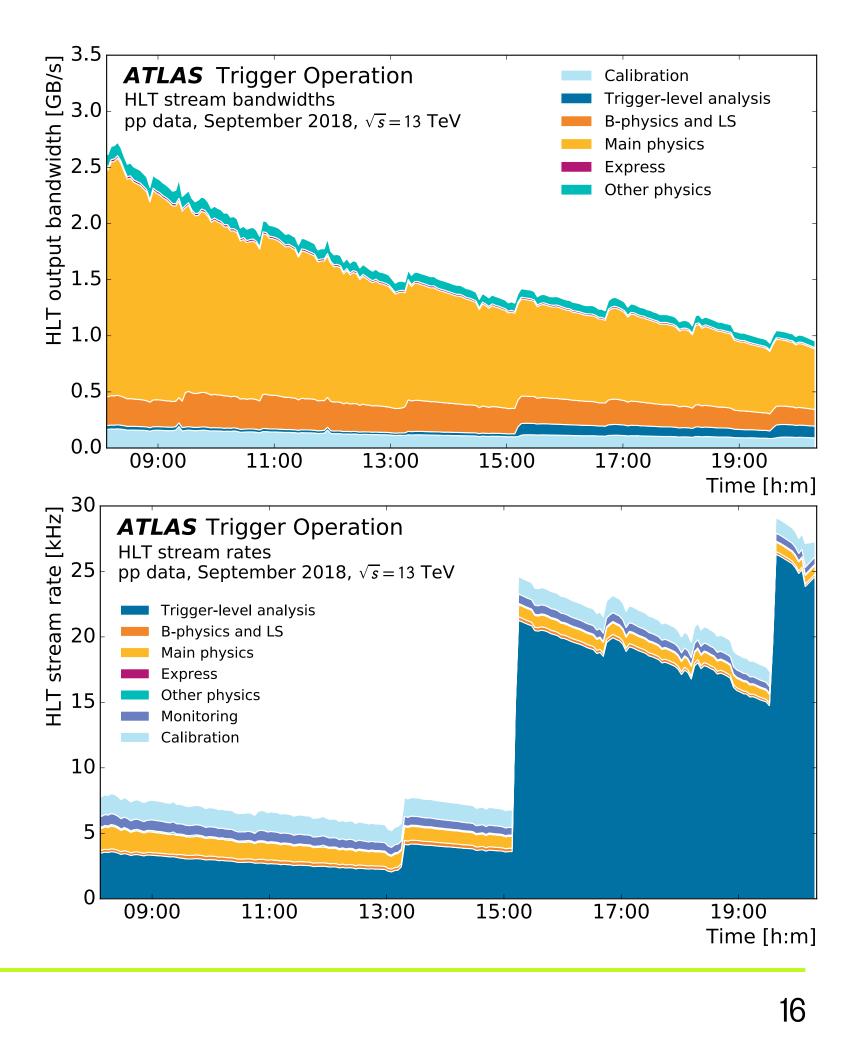
Trigger	Typical offline selection	Trigger Sele	L1 Peak	HLT Peak	
		L1 [GeV]	HLT [GeV]	Rate [kHz]	Rate [Hz]
				$L=2.0\times10^{3}$	$4 \text{ cm}^{-2}\text{s}^{-1}$
Single leptons	Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	16	218
	Single isolated tight $e, p_{\rm T} > 27 \text{ GeV}$	22 (i)	26 (i)	31	195
	Single μ , $p_{\rm T} > 52 {\rm GeV}$	20	50	16	70
	Single $e, p_{\rm T} > 61 {\rm GeV}$	22 (i)	60	28	20
	Single τ , $p_{\rm T} > 170 {\rm GeV}$	100	160	1.4	42
	Two μ , each $p_{\rm T} > 15 {\rm GeV}$	2×10	2×14	2.2	30
	Two μ , $p_{\rm T}$ > 23, 9 GeV	20	22, 8	16	47
	Two very loose e , each $p_{\rm T} > 18 \text{ GeV}$	2 × 15 (i)	2 × 17	2.0	13
Two leptons	One <i>e</i> & one μ , $p_{\rm T} > 8, 25 {\rm GeV}$	20 (µ)	7, 24	16	6
Two reptons	One loose e & one μ , $p_{\rm T} > 18$, 15 GeV	15, 10	17, 14	2.6	5
	One <i>e</i> & one μ , $p_{\rm T} > 27, 9 {\rm GeV}$	22 (e, i)	26, 8	21	4
	Two τ , $p_{\rm T} > 40, 30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5.7	93
	One τ & one isolated μ , $p_{\rm T} > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.4	17
	One τ & one isolated $e, p_{\rm T} > 30, 18 \text{ GeV}$	12 (i), 15 (i) (+jets)	25, 17 (i)	4.6	19
	Three very loose $e, p_{\rm T} > 25, 13, 13 \text{ GeV}$	$20, 2 \times 10$	24, 2 × 12	1.6	0.1
	Three μ , each $p_{\rm T} > 7 \text{ GeV}$	3 × 6	3 × 6	0.2	7
Three leptons	Three μ , $p_{\rm T} > 21$, 2 × 5 GeV	20	$20, 2 \times 4$	16	9
	Two μ & one loose $e, p_{\rm T} > 2 \times 11, 13 \text{ GeV}$	$2 \times 10 \ (\mu)$	2 × 10, 12	2.2	0.5
	Two loose e & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	$2 \times 8, 10$	2 × 12, 10	2.3	0.1
Signle photon	One loose γ , $p_{\rm T} > 145 {\rm ~GeV}$	24 (i)	140	24	47
	Two loose γ , each $p_{\rm T} > 55 {\rm GeV}$	2×20	2×50	3.0	7
Two photons	Two γ , $p_{\rm T} > 40$, 30 GeV	2×20	35, 25	3.0	21
	Two isolated tight γ , each $p_{\rm T} > 25 \text{ GeV}$	2 × 15 (i)	2 × 20 (i)	2.0	15
	Jet $(R = 0.4), p_{\rm T} > 435 {\rm GeV}$	100	420	3.7	35
Single jet	Jet $(R = 1.0), p_{\rm T} > 480 {\rm GeV}$	111 (topo: $R = 1.0$)	460	2.6	42
	Jet $(R = 1.0), p_{\rm T} > 450 \text{ GeV}, m_{\rm jet} > 45 \text{ GeV}$	111 (topo: $R = 1.0$)	420, $m_{\rm jet} > 35$	2.6	36
	One <i>b</i> ($\epsilon = 60\%$), $p_{\rm T} > 285 {\rm GeV}$	100	275	3.6	15
	Two $b \ (\epsilon = 60\%), \ p_{\rm T} > 185, \ 70 \ {\rm GeV}$	100	175, 60	3.6	11
<i>b</i> –jets	One b ($\epsilon = 40\%$) & three jets, each $p_{\rm T} > 85$ GeV	4×15	4×75	1.5	14
	Two <i>b</i> (ϵ = 70%) & one jet, <i>p</i> _T > 65, 65, 160 GeV	2 × 30, 85	2 × 55, 150	1.3	17
	Two b ($\epsilon = 60\%$) & two jets, each $p_{\rm T} > 65$ GeV	$4 \times 15, \eta < 2.5$	4 × 55	3.2	15
	Four jets, each $p_{\rm T} > 125 {\rm GeV}$	3×50	4×115	0.5	16
Multijata	Five jets, each $p_{\rm T} > 95 {\rm GeV}$	4 × 15	5 × 85	4.8	10
Multijets	Six jets, each $p_{\rm T} > 80 {\rm GeV}$	4 × 15	6×70	4.8	4
	Six jets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4×15	$6 \times 55, \eta < 2.4$	4.8	15
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 200 { m GeV}$	50	110	5.1	94
<i>B</i> -physics	Two μ , $p_{\rm T} > 11, 6$ GeV, $0.1 < m(\mu, \mu) < 14$ GeV	11,6	11, 6 (di- <i>µ</i>)	2.9	55
	Two μ , $p_{\rm T}$ > 6, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.4	55
	Two μ , $p_{\rm T} > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, \text{topo})$	$2 \times 6 (B)$	1.4	6
	Two μ , $p_{\rm T}$ > 6, 6 GeV, 7 < m(μ , μ) < 12 GeV	2×6 (Y, topo)	$2 \times 6 (\Upsilon)$	1.2	12
Main Rate				86	1750


Trigger	Signature	Trigger Selection		L1 Rate [kHz]	HLT Rate [Hz]	L1 Rate [kHz]	HLT Rate [Hz]
		L1 [GeV]	HLT [GeV]	L= 5.0×10^{27}		L= 2.0×10^{27}	
	Single μ	6	8	0.47	54	0.21	23
Leptons -	Two μ	2 × 4	2 × 3	0.16	38	0.071	15
	$\frac{1 \text{ wo } \mu}{\text{ Two } \mu^{\dagger}}$	4	2×3 2×4	1.5	28	0.93	15
	Single e (lhloose)	12	15	2.5	11	0.95	4.4
	Single <i>e</i> (loose)	12	20	0.93	35	0.36	14
	Two <i>e</i> (loose)	2 × 16	20 2×20	0.29	0.2	0.11	0.13
Photons	Single γ	12	20	2.5	61	0.97	25
THOUGHS	Single jet $(R = 0.4)$	30	85	17.1	120	6.6	47
Jets	Single jet $(R = 0.4)^{\dagger}$	12	60	0.24	120	1.3	69
	Single jet $(R = 0.4)$ Single jet $(R = 1.0)$	50	180	14.4	66	5.6	26
	Single jet $(K = 1.0)$ Single jet	50	180	14.4	00	5.0	20
	$(R = 0.4, \eta > 3.2)$	15	55	12.5	25	9.7	19
<i>b</i> -jets	Jet $(R = 0.4) \& \mu$	$4 (\mu), 15 (jet)$	$4 (\mu), 60 (jet)$	1.8	7	0.7	3
	Jet $(R = 0.4) \& \mu^{\dagger}$	4 (µ)	4 (μ), 50 (jet)	-	-	0.93	6
5 juis	Jet $(R = 0.3) \& \mu^{\dagger}$	4 (µ)	$4 (\mu), 40 (jet)$	-	-	0.93	6
	Jet $(R = 0.2) \& \mu^{\dagger}$	4 (µ)	$4 (\mu), 30 (jet)$	-	-	0.93	6
	Very peripheral coll.	TE < 50, ZDC A & C	1 (#tracks)	1.4	95	1.2	261
MB	Peripheral coll. [†]	50 < TE < 600	none	0.034	34	0.12	116
	Central coll. [†]	TE > 600	none	0.029	29	1.2	120
	Very peripheral coll.	TE < 50, ZDC A & C	1 (#tracks)	5.4	786	9.6	2048
MB PEB	Peripheral coll. [†]	50 < TE < 600	none	0.3	298	0.9	920
	Central coll. [†]	TE > 600	none	0.8	822	0.23	2251
Global	Ultra central coll.	12000 < TE	$4450 (\Sigma E_{\mathrm{T}}^{\mathrm{FCal}})$	2.3	81	0.89	32
	Event shape [†]	600 < TE	top $0.1\% v_2$ in A/C side	-	_	1.2	0.6
	Event shape [†]	600 < TE	top $0.1\% v_3$ in A/C side	_	_	1.3	0.6
	$\frac{\gamma}{\gamma + \gamma \rightarrow \gamma + \gamma}$	$4 < TE < 200 \& 1 (\gamma)$	FgapAC & < 15 (PH)	7.7	34	3.1	34
	$\frac{\gamma + \gamma \rightarrow \gamma + \gamma}{\gamma + \gamma \rightarrow \gamma + \gamma}$	$TE < 50 \& 2 \times 1 (\gamma)$	FgapAC & < 15 (PH)	1.8	3	0.66	2.7
	$\frac{\gamma + \gamma \rightarrow \mu + \mu}{\gamma + \gamma \rightarrow \mu + \mu}$	$TE < 50 \& 2 \times 1 (y)$ TE < 50 & 4 (μ)	$\frac{1 \text{ gap ite } \mathbf{a} < 15 (111)}{4 (\mu)}$	0.27	5	0.19	2.1
UPC	$\frac{\gamma + \gamma \to \mu + \mu}{\gamma + \gamma(A) \to HF}$	$\frac{12}{\text{TE} < 200 \& 4 (\mu)}$ & (!ZDC A or !ZDC C)	$\frac{1}{4}(\mu)$	0.25	1.5	0.19	0.6
	$\gamma + \gamma \rightarrow e + e$	TE < 200 & 7 (e)	12 (<i>e</i>)	0.09	1	0.03	0.5
	$\frac{\gamma + \gamma \rightarrow e + e}{\gamma + \gamma \rightarrow \gamma + \text{jet}}$	TE < 200 & 7 (e) $TE < 200 \& 7 (\gamma)$	$\frac{12}{12} \frac{(e)}{(\gamma)}$	0.09	6	0.03	2.4
	$\gamma + \gamma \rightarrow \text{jets}$	5 < TE < 200 & ((ZDC A & !ZDC C)	20 (jet)	0.93	69	0.40	24
	$\gamma + \gamma \rightarrow \text{jets}$	or (ZDC C & !ZDC A)) 4 < TE < 200	15 (jet, $R = 0.4$)	0.65	22	0.74	11
		& (!ZDC A & !ZDC C) 4 < TE < 200					
	$\gamma + \gamma \rightarrow \text{jets}$	& (!ZDC A & !ZDC C) 4 < TE < 200	15 (jet, $R = 1.0$)	0.65	36	0.74	20
	high multiplicity	& ZDC A & !ZDC C	FgapC & 35 (#tracks)	0.48	2.4	0.20	0.7
	high multiplicity	4 < TE < 200 & ZDC C & !ZDC A	FgapA & 35 (#tracks)	0.47	2.4	0.20	0.9
	$\gamma + A ightarrow X^\dagger$	TE< 200 & ((ZDC A & !ZDC C) or (ZDC C & !ZDC A))	1 (#tracks)	0.56	15	0.50	12
	$\gamma + A \rightarrow V M^{\dagger}$	TE < 20	1-15 (#tracks)	_	_	16.5	60



Trigger menu design

- Continuous effort to port offline improvements to the trigger
- Need to find a compromise between performance and CPU requirements
- Maximize synergy between different trigger signatures
 - E.g. jet calibration uses tracks if available from b-tagging, but has also a calorimeteronly version if tracking has not run



Streams and prescales

- Most of the **bandwidth** is devoted to the main physics stream (>80%) and a dedicated b-physics stream (~15%)
- Most of the rate goes to <u>trigger-level analysis</u> (stores only jet 4-vectors reconstructed by HLT) and calibration streams, which store only a subset of the detector/objects
- Support and lower priority physics triggers are prescaled, and their prescale can be reduced towards the end of the LHC fill, once the limiting resources (L1 rate, CPU) are available

Run 3, multi-thread

- ATLAS is redesigning its core framework for native, efficient and user-friendly multi-threading support \rightarrow AthenaMT
- HLT trigger is not limited by memory, but will profit from the redesign in order to integrate more tightly with offline reconstruction
- HLT requirements (partial event reconstruction in Regions of Interest and early rejection) considered during design of AthenaMT from the beginning
- Replacing own scheduling and caching by native Gaudi Scheduler, which is also used for offline reconstruction
- AthenaMT offers three kinds of parallelism
 - Inter-event: multiple events are processed in parallel Intra-event: multiple algorithms can run in parallel for an event In-algorithm: algorithms can utilize multi-threading and vectorisation

