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Why a Trigger system in ATLAS?

® 40 MHz Bunch Crossings (1 BC every 25 ns when LHC is full). ATLAS
sees many collisions on each crossing (eg in 2018 ~ 55 proton-proton

scatterings at start of a run). proton - (anti)proton cross sections
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Electron and photon triggers

Electron/Photon triggers essential for the LHC physics programme

o Standard Model Cross Section measurements
o W/Z (+jets); di-boson; inclusive photon; di-photon; tt production
Eur. Phys. J. C 79 (2019) 535, Phys. Rev. D 100 (2019) 032007, JHEP 03 (2020) 054
@ Measurement of Higgs properties

o H— ~v, ZZ, WW final states

Phys. Lett. B 786 (2018) 223, Phys. Lett. B 800 (2020) 135103, Phys. Lett. B 801 (2020) 135145
o H— 77 (7 — e), associated VH and ttH production and

Phys. Lett. B 805 (2020) 135426, Phys. Rev. Lett. 125 (2020) 051801
o H—bb— leptonic decay

Phys. Lett. B 786 (2018) 59, Phys. Lett. B 801 (2020) 135145

@ Searches span a broad range of pr and multiplicity

o high-pt Exotic searches to low-p1 compressed SUSY scenarios
JHEP 05 (2019) 142,Phys. Rev. D 100 (2019) 012006,Phys. Lett. B 764 (2017) 11, JHEP 05 (2019) 142

Challenges for the trigger system

o Trigger on interesting and very rare events (— 3 Higgs / 10'%pp collisions) and still
drop most of possible background

e Maintain low thresholds, high efficiency with limited bandwidth (rate)
@ Reduction from 40 MHz crossing rate to ~ 1.5 kHz output rate
@ What is not selected by the trigger — LOST FOREVER!

ATLAS-CONF-2019-029

2 500000 ATLAS Preliminary + Data 3
© kVs=13TeV, 139" — Fit E
£ 40000F -=-- Background 3
& E
30000F~ E
20000F~ 3
10000 41y, m, = 126.09 Gev .
2 1500
2 1000
I3
€ 5008 4
3 ¢+ " ’09"’ A NYRPR RO
£ soobt { '
o 710 720 730 740 750 760
m,, (GeV]
arXiv:2004.03969 [hep-ex]
3 180T T T T T
£ Data ]
8 o ATLAS
] F (5= 13 Tev, 139 b -z
o pls= eV, XX, VWV
3 140 P I 7o,
c 7 W Uncerainy
2120

100
80
60
40
20

%

0 90 100 110 120 130 140 150 160 170
m, [GeV]



Challenges for Run-3 4]

Harder conditions than in Run-2!
@ Increase in centre of mass energy from 13 TeV to 14 TeV
o Peak luminosity 2 x 1034cm=2s~1 to 2.2 x 10%4*cm—2s~1
o We will be levelling — peak luminosity for longer time (different, lumi profile)
o Total integrated luminosity from ~150 fb~! to ~ 300 fb—!

Calorimeter detectors bbb Other Detectors

Level-1 calorimeter

Detector
Trigger Upgrades for Run-3 e
o Updated TDAQ structure e L%J e =09

o L1 calorimeter granularity improved L

° Iéir:d;ntlﬁcatlon of electron photons closer to offline than in —— (e

Level1 (< 2.5 ps)

ReadOut System

o Native multithreading framework to run algorithms at HLT "““‘"”“’”"’"‘"“l [———*{0a= Golecion Notwor

RoI
Requests|
High Level Trigger

Fast TracKer HLT procossing

o Using at HLT same algorithms as offline at “precision”
reconstruction




Triggering e/~ in ATLAS B

o E/~ trigger is based on reconstructing objects within a Region of Interest (Rol)
o Level 1 Electromagnetic (L1 Calo) trigger seeds the Rol for the High Level Trigger (HLT)

o E/~ HLT algorithms reconstruct and identify
o Clusters
o Tracks
o Photons — Electromagnetic (EM) Cluster
o Electrons — EM Cluster + Track

o E/y HLT algorithm flow

o Fast algorithms rejects background events early

o Precise algorithms to efficiently identify e/~

o E/~ Reconstruction, calibration and identification

o Offline software and techniques



Level 1 EM trigger - Improvemens in Run-3 B
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L1 Calo

o The Run-3 LAr calorimeter’s trigger digitised readout
improved with finer granularity

o New suite of L1 hardware designed to take advantage
of this
o Finer granularity of the super cells allows to use shower shapes
closer to offline and reduce the rate
o Better resolution
o Sharper trigger turn-on
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NNs at fast reconstruction in HLT

The RINGER algorithm

o NN based algorithm to identify electrons at fast reconstruction since 2017. In Run-2 used for triggers with
threshold above 15 GeV

o Use lateral shower development. Concentric ring energy sums in each calorimeter layer
o Transverse energy in each ring normalised to total transverse energy in the Rol

o Ring energies fed into multilayer perceptron (MLP) neural networks

o Ringer increases fast calorimeter step

) hfs'i‘ig‘e’rgeet"'c :N [ecromagene reconstruction time, but reduces input candidates
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o Evaluating its use in photon triggers too —
expected to gain early rejection on photon chains



Electrons and photons at HLT B

o Energy of an e/~ candidate built with cluster of cells in EM calorimeter
@ Photons are reconstructed with only the cluster

o Common shower shape variables for e/~ calculated for identification

o Electron candidates have tracks loosely matched to the cluster (A¢, An) third layer hadronic calorimeter

‘electromagnetic .-

o tracks extrapolated to 2nd EM layer
calorimeter .-

o Electrons have additional information

o hits in the tracking detectors first layer (strips)
e transition radiation hit information i
o track-cluster matching (A¢, An)

second layer
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Identifying e/~

o Common set of shower shape variables used to identify electrons and photons

o EM shower can be characterised by the longitudinal (depth) and lateral (width) shapes

o e/~ use same variables, but in different ways

Variables and Position
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o ldentification of photons and electrons
o Using Cut-Based identification for photons and
Likelihood identification for electrons
o Optimised in bins of Er and 7
o Several levels of discrimination with higher efficiency
but lower purity (loose, medium, tight)

o Electron identification incorporates tracking
information
o Transition radiation hit information
o Track quality & Track-cluster matching
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Electron Trigger Performance in data

o Trigger performance is evaluated using tag and probe method using Z— et e~ events

Tag lowest un-prescaled single-electron trigger
Probe used to measure the trigger efficiency, opposite charge to tag

single electron trigger combination: un-prescaled single-electron triggers with lowest thresholds
Efficiency is measured with respect to offline electron

Latest results using all Run-2 data
Eur. Phys. J. C 80 (2020) 47
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Photon Trigger Performance in data
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@ Tag and probe method:

Tag Events triggered by primary electron or muon triggers e
Probe Tight Photon satisfying mass of £ £~ is within Z mass

o Eur. Phys. J. C 80 (2020) 47

100 110

120
m, [GeV]

T T T T

> = =
> 11 : ey S 1.04 s =
5 Pp data 2015-2018, /5= 13TeV | 8 1 gof ATLAS PP data 20152018, {5 = 13 TeV -
S 1 1 F=E o E
& “ q w E i du o DUV S :l_ E
. E 5 0.98] ii}ﬁﬁﬂ' %:‘33—1¢.¢ T + E
o 0.9 i = E 4 + ¢ E
8 Diphoton triggers E 2 0-96E -+— +
F o8 o 2015 3 0'945 + =
02016 B 0.92f _ ‘ E
0.7 22017 4 0.9F Diphoton triggers E
° 2018 ] 088> 02015 02016 42017 © 2018 =

. 0.6 R PR . - o 1T
1.05 05 [ i
% 1 § 1 S BB g Aty ]

T 0.95 B Doaﬂsg— R e

a oL

09355 @ 40 4 50 55 60 65 70 10 20 30 40 50 <ﬁ°>
E, [GeV]



Improvements for Run-3

Electron triggers in Run 3

I Fast Calo: Ringer I

Many improvements being implemented at the HLT for electrons and Photons
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Conclusions

Electron and photon triggers

o Electron and Photon triggers are key for a vast fraction of ATLAS physics programme

o Trigger is the first step of any physics analysis — Trigger must be efficient on signal and still reject most of
the background
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Challenges for Run-3
o Harsher operation conditions for the Trigger with respect to Run-2

o Increased instantaneous luminosity makes pileup larger and more difficult for the Trigger to distinguish
signal from background

o Increase of CME will increase production of QCD background

Performance and improvemens for Run-3

@ During Run-1 and Run-2 Electron and Photon triggers performed with very high efficiency keeping overall
rates within the storage limitations

o Move towards MultiThread algorithms at HLT will improve the system and make the CPU usage more
efficient

@ Use of offline algorithms at HLT makes the trigger selection closer to offline — improving efficiency

o Use of SuperClusters at HLT for Electron and Photon triggers will improve the Energy resolution of the
Trigger

@ Use of NN based Ringer for low pr electron triggers and photon triggers will improve early background
rejection and CPU usage at HLT




