

Performance of the ATLAS Tile Calorimeter

Siarhei Harkusha on behalf of the ATLAS Collaboration

Institute of Physics of the NAS of Belarus, Minsk

40th International Conference on High Energy Physics ICHEP2020, July 28th - August 6th, 2020

The ATLAS Tile Calorimeter

- Central hadronic calorimeter ($|\eta| < 1.7$) in the ATLAS detector
- Measures hadrons, jets, missing transverse energy, provides input to Level 1 Calorimeter trigger and assists in muon identification
- Sampling calorimeter: iron plates and plastic scintilating tiles (4.7:1)
- Double photomultiplier readout using wave length shifting fibers
- 9852 readout channels (PMTs)
- 5182 cells, granularity $\Delta\eta \times \Delta\phi$ in layers:
 - A,B(C) 0.1×0.1
 - D 0.2 × 0.1

Signal Processing and Calibration

- Signal from PMT is shaped, amplified (2 gains, 1/64 ratio), and digitized each 25 ns
- Amplitude and time are reconstructed from 7 consecutive measurements (*S_i*):

$$A = \sum_{i=0}^{t} a_i \cdot S_i, \ \tau = \frac{1}{A} \sum_{i=0}^{t} b_i \cdot S_i$$

Tabas

• Energy is evaluated from amplitude using calibration coefficients (C_i) :

 $E[GeV] = A[ADC] \cdot C_{ADC \rightarrow pC} \cdot C_{pC \rightarrow GeV} \cdot C_{Cs} \cdot C_{laser}$

- C_{ADC→pC} is provided by Charge Injection System (monitors electronic chain stability and linearity)
- $C_{pC \rightarrow GeV}$ was measured in dedicated testbeam campaigns (2001-2003)
- C_{Cs} is provided by Cesium Calibration System (monitors all optics components: tiles, fibers, PMTs)
- Claser is provided by Laser Calibration System (monitors PMTs stability)

Charge Injection Calibration

- Injects a signal of known charge and measures the electronic response
- Spanning full ADC range (0-800pC)
 - 2 gains for each channel
- Calibration performed \sim weekly during dedicated calibration runs

- Extracts the conversion factors from ADC counts to pC: $C_{ADC \rightarrow pC}$
- $\bullet\,$ Precision \sim 0.7%, stability \sim 0.03%
- Also used to calibrate analog Level-1 Calorimeter trigger

Cesium Calibration

- A movable radioactive source 137Cs (γ-rays with energy 662 keV) passes through the calorimeter body, 2-3 times per year in Run 2
- Uses independent integrator readout $(\sim 10 \text{ ms})$ during source movement
- Deviation of the cell response in time is caused by PMT gain variation and scintilator degradation

- Maximal drift is in layer A which is the closest to the collision point
- Precision in typical cell about 0.3%
- Allows to adjust PMT gain (changing high voltage) to restore calorimeter response uniformity

Laser Calibration

- A controlled amount of light is sent into each PMT (532 nm light)
- Performed ~ weekly, during dedicated calibration runs and in empty bunches during collisions to monitor and calibrate timing
- Measures the drift seen in PMTs w.r.t the last Cesium scan
- Allows to detect the HV changes

- The maximal drift is observed in A- and E-cells which are the cells with highest energy deposits
- Channel response deviation with respect to nominal gives *C*_{laser}
- Precision is better than 0.5%

Minimum Bias System

- Measures response to Minimum Bias events (soft inelastic parton interactions during pp collisions)
- Shares readout with Cesium system i.e. integrates PMT signals over $\sim 10 \text{ ms}$ (during data taking)
- Monitors the full optical chain

- Also calibrates E-cells and MBTS (Minimum Bias Trigger Scintillators)
- Measured currents dependent on the instantaneous luminosity (L) linearly
- Provides an additional way to measure and monitor L in ATLAS

Combined Calibration

- Cell response variation comparison between Laser and Minimum Bias measurements
 - Cesium and Minimum Bias systems see PMT gain drift and scintillator ageing while Laser system only monitors PMT gain drift
- Down (Up) drifts are observed during collisions (maintenance) periods

• Difference between Laser and Minimum Bias measurements can be interpreted as scintillator ageing due to irradiation (clearly seen after 2015)

Time Calibration

- Precise time calibration is important for cell energy reconstruction
- Set the phase so that a particle traveling from the interaction point at the speed of light gives the signal with measured time equal to zero

- Time calibration is calculated using jets and monitored with laser
- Resolution < 1 ns for $\textit{E}_{cell} > 4~\text{GeV}$
- Can be used in TOF measurements e.g.: search for heavy *R*-hadrons

Noise

- Total noise per cell in calorimeter comes from two sources:
 - Electronic noise measured regularly in dedicated runs without signal in detector
 - Pile-up noise originates from multiple interactions in the same or neighboring events

- Electronic noise is below 20 MeV for most of the calorimeter cells
- Total noise is increasing with pile-up
- The largest noise in the region with highest exposure (A- and E -cells)

Detector Status and Data Quality

- Monitoring includes identifying [and masking] problematic channels, data corruption, other hardware issues, correcting miscalibration, timing
- The identified issues are fixed during maintenance campaigns and that allows good recovery of the system

• Data Quality efficiency is \sim 99.7 % during Run 2 (2015 - 2018)

Year	Efficiency [%]
2015	100
2016	99.3
2017	99.4
2018	100

• Red line corresponds to switched off module due to cooling problem

Single Particle Response

- The ratio of the calorimeter energy at electromagnetic (EM) scale to the track momentum $\langle E/p \rangle$ for isolated charged hadrons is used to evaluate uniformity and linearity during data taking period
- Measured in Minimum Bias events

- Expected (*E*/*p*) below unity due to the non-compensating nature of the sampling calorimeter (e/h = 1.36)
- Data and Monte Carlo simulation (Pythia8) do agree well (within 5%)

Muons

- Muons from cosmic rays are used to study in situ the EM scale and the calorimeter cells intercalibration
- Cell response is estimated as the energy deposited by the muon per the length of the track path: dE/dx

- Good energy response uniformity between the calorimeter cells in ϕ
- Response non-uniformity in $\eta < 5\%$ with cosmic muons

- The Tile Calorimeter is an important part of the ATLAS detector at the LHC
- It is a key detector to measure hadrons, jets, and missing transverse energy
- Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated using a set of calibration systems
- Intercalibration and uniformity are monitored with isolated charged hadrons and high-momentum cosmic muons
- The stability of the absolute energy scale at the cell level was maintained to be better than 1% during Run 2 data taking
- $\bullet\,$ The overall Data Quality efficiency \sim 99.7 % in Run 2