

Physics and throughput performance of the real-time reconstruction for the LHCb upgrade 40th International Conference on High Energy Physics (ICHEP)

Renato Quagliani (LPNHE) on behalf of the LHCb collaboration

The LHCb detector

LHCb is a high precision experiment at LHC optimized for b and c hadrons decays

- Forward arm spectrometer in $\eta \in [2, 5]$
- Excellent track and vertex reconstruction

 - $ellipsi ellipsi ellipsi <math>\epsilon_{tracking} > 96\%$
 - $\sigma_p/p \sim 0.5 1\%$
 - $\sigma_{p} \sim 45 \text{ fs for } b \text{ hadrons.}$
 - $\sigma_{ au} \sim$ 45 is for b hadrons
- Excellent particle identification
 - \bullet $\epsilon_{K-ID} \sim 95\%$
 - $\epsilon_{\mu-ID} \sim 97\%$
- Benefit of large $b\overline{b}$ and $c\overline{c}$ cross section in pp collision in forward region.
- More on Run 2 performance in talk from Martina P.

LHCb DAQ and trigger in Run1-2-3: a continuos evolution

Run 1:

Run 2:

• Run 3:

- Hardware trigger: 40→ 1 MHz read-out limit in Run1,2 based on Muon and Calorimeter signatures
- HLT1(partial) and HLT2(full) event reconstruction split in Run2
- **Buffer** data to disk to perform real time alignment and calibration
- Offline quality reconstruction and selection in the online system
- Run3 : remove Hardware trigger in favour of a fully software based one.
- Event reconstruction at collision rate
- Full detector read-out at 40 MHz

From Run 1,2 to Run3: b, c physics at LHC

- Run 3 data taking period will start in 2021
- LHC pp collisions at $\sqrt{s} = 14 \, \text{TeV}$, 25 ns bunch spacing $\rightarrow 40 \, \text{MHz}$ collision rate.
- LHCb aims at boosting the physics output increasing the instantaneous luminosity and the signal rate.

- More PVs, more tracks, more signal
- Almost all events will have a b or c hadron in Run 3

LHCb-PUB-2014-027

Signatures in LHCb from b and c hadrons for triggering

- $m_{head} \sim 5.28 \, {
 m GeV} \!
 ightarrow \, p_T^{daughters} \sim \mathcal{O}(\, {
 m GeV})$
- $\tau_B \sim 1.16 \,\mathrm{ps.} \ \Delta (SV PV) \sim 1 \,\mathrm{cm.}$
- Dispaced tracks carrying high p_T.

- $m_{head} \sim 1.86\,\mathrm{GeV} \!
 ightarrow p_T^{daughters} \sim \mathcal{O}(\,\mathrm{GeV})$
- $\tau_B \sim 0.4 \,\mathrm{ps.}$ $\Delta (SV PV) \sim 0.4 \,\mathrm{cm.}$
- Dispaced tracks carrying high p_T .

Key ingredients for efficient triggering and signal discrimination

- \bullet Primary vertex finding, high p_T tracks reconstruction and optimal μ -Identification
- Inclusive triggers on 1&2 track signatures.
- Challenge in Run3 is not only to have an efficient trigger, but also be able to identify the topology of events as early as possible in the triggering process: more information than single sub-detector read-out needed
- ullet Track reconstruction at collision rate required : huge computing challenge

Reconstruction at collision rate for the LHCb upgrade: 2 TDRs

- Both proposals carried out in the last years
- Extensive studies and developments on both architectures
- Brand new algorithms and ideas on pattern recognition developed on both architectures
- Final decision : use GPUs for HLT1
- All the work and experience gained for HLT1 reconstruction using CPUs crucial to achieve large speed-up also for the HLT2 reconstruction.
- Benefit of running HLT1 on GPUs :
 - Reduce network bandwidth between EventBuilder and filter farms
 - Free up filter farm CPUs for HLT2 only

HLT1 reconstruction: tasks

Highly parallelizable tasks across sizeable set of algorithms

- Full event information copied to GPU (Raw event size 100 kB)
- Process HLT1 at 30 MHz on less than 500 state of the art GPUs.
- Selection reports copied back to CPUs.

Data preparation

- Decode raw data in
 - VErtex LOcator (VELO)
 - Upstream Tracker (UT)
 - Scintillating Fibre Tracker (Sci-Fi)
 - Muon chambers
- Clustering of VELO pixels into hits

Reconstruction

- Velo tracks reconstruction
- Primary Vertex reconstruction
- Add UT hits to Velo tracks
- Find matching segments in Sci-Fi
- Match tracks to Muon hits
- Make 2-track secondary vertices
- Fit tracks with a (fast) Kalman Filter

Selection

- 1-track selections
- 2-track selections

HLT1 reconstruction on GPUs: parallelization using GPUs

Efficient parallelization can be achieved

- Repeating the same kernel or function thousands of times: parallelize intra-event reconstruction.
- Linearize algorithms and algorithm workflows as much as possible
- Organize and redesign data structures in a parallel friendly way for the algorithm purpose
- Pipeline the HLT1 reconstruction in parallel across thousands of events

Raw data decoding in Velo, SciFi, UT, Muon

• Decode binary information from subdetector readout: parallelize across readout units and/or sensors.

VELO pixels clustering

Parallelize across small detector units.

Track reconstruction

- Pattern Recognition: assign/add hits to a track candidate, parallelize across hit combinations
- Track fit: parallelize across tracks

Vertexing

• Combine tracks to form primary and secondary vertices. parallelize across tracks and vertex seeds.

HLT1 reconstruction on GPUs: Velo tracking

- Velo region has $\overrightarrow{B} = (0,0,0)$.
- \bullet VELO tracks: straight lines in bending and non-bending plane $\to \sim$ constant ϕ angle as a function of z
- Search for combinations of hits in parallel
- Seeding: Iterate over all possible triplets of VELO modules
- ullet Choice of triplets based on alignment in ϕ
- Forwarding: Forward triplet to next layer.
- Algorithm interleaves seeding with forwarding to maximize spatial and temporal locality.

HLT1 reconstruction on GPUs: VELO-UT tracking

- Find hits in the UT tracker (4 layers) matching the Velo input tracks projections after small magnetic field bending.
- Define search regions in each UT plane: hits are stored in sector ranges and optimized for parallel processing.
- Tracklets finding inside windows from the 4 layers building combinatorics in parallel

P. Fernandez Declara, D. Campora Perez, J. Garcia-Blas, D. vom Bruch, J. Daniel Garca, N. Neufeld , IEEE Access 7 (2019)

troduction HLT1 reconstruction HLT1 performance Conclusion

HLT1 reconstruction on GPUs: SciFi tracking and Muon ID

SciFi tracking

- Extrapolate each Velo-UT track in the 12 layers of the SciFi detector
- Build *triplets* combinations using T1/2/3.
- Best triplets selected according to local parameterization of magnetic field¹
- Forward all triplet(s) to remaining layers with an extra parameterized corrections in the non-bending plane.

¹Similarly to arXiv:2007.02591

- Project tracks to MWPC muon stations
- Find hits inside the FoI for μID

HLT1 reconstruction on GPUs: PV finding

- Algorithm developed for CPU and ported to GPU: based on histogramming along beam-axis.
- Extrapolate in parallel each VELO tracks to the point of closest approach to beamline (z_{POCA})
- Caching covariance matrix at that position: avoid updating it
- Histogram filling for each track in parallel and take uncertainties into account using Gaussian densities
- Peak finding and vertex fitting

PV finding histogram

 $\sigma_{\mathsf{x}}(PV)$

• Tracking down to 0 p_T would cost 20% extra in GPU resources.

oduction HLT1 reconstruction HLT1 performance Conclusion

HLT1 physics performance: Resolution, PV & Muon ID

Primary Vertex reconstruction efficiency

Muon ID efficiency

 $\pi
ightarrow \mu$ mis-ID efficiency

Trigger	Rate [kHz]
ErrorEvent	0 ± 0
PassThrough	30000 ± 0
NoBeams	5 ± 3
BeamOne	18 ± 5
BeamTwo	8 ± 3
BothBeams	4 ± 2
ODINNoBias	0 ± 0
ODINLumi	1 ± 1
GECPassthrough	27822 ± 52
VeloMicroBias	26 ± 6
TrackMVA	409 ± 23
TrackMuonMVA	23 ± 6
SingleHighPtMuon	7 ± 3
TwoTrackMVA	503 ± 26
DiMuonHighMass	131 ± 13
DiMuonLowMass	177 ± 15
DiMuonSoft	8 ± 3
D2KPi	93 ± 11
D2PiPi	34 ± 7
D2KK	76 ± 10
Total w/o pass through lines	1157 ± 39

- ullet From 30 $\mathrm{MHz}
 ightarrow 1\,\mathrm{MHz}$ event rate reduction
- ullet Can execute $\mathcal{O}(100)$ lines with almost no effect on throughput
- Selection efficiencies fulfill HLT1 requirements for broad range of decays of interest for LHCb

Signal	GEC [%]	TIS-OR-TOS [%]	TOS [%]	$GEC \times TOS \ [\%]$
$B^0 o K^{*0}\mu\mu$	89±2	91±2	89±2	79± 3
$B^0 o K^{*0}ee$	84±2	69 ± 2	62±2	52± 3
$B_s^0 o \phi \phi$	83±3	76 ± 3	69 ± 3	57± 3
$D_s^+ ightarrow K^- K^+ \pi^+$	82±4	59±5	43±5	35±4
$Z o \mu\mu$	78±1	99 ± 0	99 ± 0	77±1

GEC : Global Event Cut, TIS: Trigger Independent of Signal, TOS: Trigger On Signal

- Selections for alignment and monitoring implemented as well
- On going: adding more selections

 duction
 HLT1 reconstruction
 HLT1 performance
 Conclusion

 300
 0000000
 0000
 0000
 0000

HLT1 computational performance

- Full HLT1 at 30 MHz input rate can be processed using 215 GPU cards. Available slots are 500.
- Computing performance scales well with GPU generations: improvements expected.
- Room already available to include more algorithms to further expand LHCb capabilities, e.g. PID, long-lived track reconstruction, e optimized track reconstruction....

HLT1 performan

Conclusion

Status

- LHCb is almost ready to face the MHz signal era, changing the trigger paradigm
- ullet From background rejection o signal selection and characterization
- ullet Event rate reduction o bandwidth reduction (see backup)
- · Major detector and DAQ upgrade to perform offline quality event reconstruction in real time
- \bullet Partial event reconstruction (HLT1) at $30\,\mathrm{MHz}$ input rate using GPUs.
- Full event reconstruction (HLT2) at 1 MHz input rate on CPUs.
- Selective persistency developed for Run II will be used in the upgrade as baseline (see talk from Victor R.)

Current developments

- Improve computing performance for HLT2 reconstruction
- Implementation of physics selections for both HLT1 & HLT2
- Get ready for commissioning
- Possibly expand HLT1 reconstruction content using GPUs with great benefit for the LHCb upgrade physics program

LHCb trigger strategy for the upgrade

- L0 Hardware trigger output rate of $1\,\mathrm{MHz}$ imposed by read-out system fully saturates already in Run 2. [Higher rate \rightarrow higher $\rho_T^{L0}(\mu)/E_T^{L0}(h^\pm/e^\pm)$ cuts to keep $1\,\mathrm{MHz}$]
- → Full event readout at bunch crossing rate
- ullet Event reconstruction and triggering in real time
- $\bullet \ \to \mbox{Upgrade}$ and replacement of subsystems
 - Cope with higher occupancy
 - Faster/higher precision tracking
 - Full replace of DAQ to support 40 MHz detector read-out
- LHCb upgrade trigger strategy: full software based trigger at 30 MHz (non-empty bunch crossing collision rate)

HLT2 reconstruction: tasks

- Using a fully aligned and calibrated detector. More on calibration and alignment in talk from Arantza O.
- ullet Offline quality track fit and Particle Identification at 1 $\,\mathrm{MHz}$ input rate
- Knowledge aquired on speeding up CPU solution for HLT1 ported into HLT2

HLT2 selections: the real time analysis paradigm

- Using a fully aligned and calibrated detector. See talk from Arantza Oyanguren
- \bullet Offline quality track fit and Particle Identification at 1 $\,\mathrm{MHz}$ input rate
- Knowledge aquired on speeding up CPU solution for HLT1 ported into HLT2
- Build offline-like candidates in the online system and perform analysis on direct trigger output.

Selective persistency: what is saved to disk?

Extrapolated throughput to tape during the upgrade					
STREAM	rate fraction	throughput (GB/s)	bandwidth fraction		
FULL	20%	5.9	59%		
Turbo	68%	2.5	25%		
TurCal	6%	1.6	16 %		
Total	100%	10	100%		

 $Bandwidth\ optimization:\ Trigger\ output\ rate\ [\ kHz\]\ \times\ \overline{\rm event\ size}\ [\ kB]\ crucial\ for\ final\ storage\ [up\ to\ 80\ Gbit/s].$

- Offline quality flexible-selections available in online system. See talk from Victor R.
- Choose what to store to disk to optimize bandwidth.
- \bullet Reduced event format and size \to keep high signal efficiency using the same bandwidth.
- Real Time Analysis concept implemented in Run 2 with Turbo stream becomes the baseline in Run 3.

GPU architecture design

Interconnect between CPU and GPU

- PCle 3.0: up to 16 GB/s
- PCle 4.0: up to 32 GB/s

- Avg bandwidth between CPU and host memory
- Low core count/Powerful ALU
- Complex control unit
- Large caches

Latency

- High bandwidth between GPU cores and GPU memory
- High core count
- No complex control unit
- Small caches

Throughput

Slide taken from here

GPU programming model

- GPU code is executed by many "threads" in parallel
 - Parallel functions, aka "kernels" spawn threads organized in a "grid" of blocks
- Threads in the same block can:
 - Communicate via fast on-chip shared memory
 - Synchronize

Kernel 0

Block 0

Kernel 1

Block 1

2222222

Block 2

11111111

Block 3

Slide taken from here