

The Upgrade of the LHCb RICH Detectors

LUCA MINZONI

ON BEHALF OF THE LHCb COLLABORATION

The LHCb Detector

The LHCb RICH Detectors

RICH1 (25-300 mrad)

C_4F_{10}

- ° n = 1.0014 at 0°, 101.325 kPa, $\lambda = 400$ nm
- $V = 4 \text{ m}^3$
- Up to 60 GeV/c

RICH2 (15-120 mrad)

CF_4

- ° n = 1.0005 at 0°, 101.325 kPa, $\lambda = 400$ nm
- $V = 100 \text{ m}^3$
- Up to 100 GeV/c

Hybrid Photon Detectors (HPDs) in both RICH1 and RICH2

- Solid state detectors
- Embedded 1 MHz electronics

Excellent PID performances (LHCb-FIGURE-2020-012)

Talk by Martina Pili "Performance of the LHCb detector in the Run 2" for more performance plots

LHCb Phase 1 Upgrade and RICH Upgrade

LHCb Upgrade (2019-2021)

- $^{\circ}$ LHCb luminosity from 4×10^{32} cm⁻² s⁻¹ to 2×10^{33} cm⁻² s⁻¹
- Readout frequency from 1 MHz to 40 MHz (bunch-crossing rate)

LHCb RICH Upgrade

- Mechanical and Optical system
 - Optical system redesigned to reduce occupancy at higher luminosity
 - New cooling system and support mechanics
- Front-End (FE) Electronics and DAQ system
 - HPDs replaced with 64-channels Multi-Anode PhotoMultiplier Tubes (MaPMTs)
 - FE Electronics to read-out at 40 MHz
 - CLARO8 ASIC
 - FPGA-based Digital Board
 - o Data transmitted via GigaBit Transceiver (GBT) chip

		LHC Era		HL-LHC Era		
	Run 1 (2010-2012)	Run 2 (2015-2018)	Run 3 (2021-2023)	Run 4 (2027-2029)		
Integrated Luminosity	3 fb ⁻¹	9 fb ⁻¹	25 fb ⁻¹	50 fb ⁻¹		
Instantaneous Luminosity	4×10 ³² cm ⁻² s ⁻¹ (Current LHCb)		2×10 ³³ cm ⁻² s ⁻¹ (Upgraded LHCb)			
	LS2					

LHCb RICH1 Upgrade Optical System

Peak occupancy < 30 % to maintain actual PID performance

- Focal plane and spherical mirror warded from flat mirror to increase ring size
- New spherical mirrors with larger radius of curvature

Larger gas enclosure

Compact photo-detection system required

RICH1 Optical System Upgrade

Hamamatsu MaPMT

 3100 R13742 (from R11265 series) and 450 R13743 (from R12699 series), spares included

Ultra-bialkali photocathode and UV glass window

• Chromatic error reduction

Minimum gain of 1×10⁶ @ 1 kV

Maximum pixel-to-pixel gain spread

- R13742 1:4
- R13743 1:3

Dark Count Rate (DCR)

- < 1 kHz per pixel</p>
- < 16 kHz per R-type MaPMT</p>
- \circ < 70 kHz per H-type MaPMT

LHCb RICH Upgrade Elementary Cell

MaPMTs housed in custom sockets on Baseboard (Bb)

- Hamamatsu MaPMTs, 8×8 pixel matrix
 - 1"×1" R13742
 - 2"×2" R13743
- Validated with dedicated Quality Assurance (QA) procedure
- EC-H type
 - One R13743 MaPMT per EC
 - Only outer regions of RICH2
- EC-R type
 - 2×2 matrix of R13742 MaPMT per EC
 - All RICH1 and central regions of RICH2

CLARO ASIC mounted on Front-End Boards (FEBs)

Interface between FEB and FPGA based Digital Board with Backboard (Bkb)

Photon Detector Module (PDM)

- 4 ECs (R or H type)
- 2 Digital Boards

LHCb RICH Upgrade CLARO ASIC

8-channel amplifier/discriminator ASIC

- 0.35 μm AMS CMOS technology
- Recovery time < 25 ns
- Power consumption ~1 mW/channel
- Adjustable threshold and gain (6+2 bits) to compensate for PMT gain variation
- Binary read-out
- 128-bit register protected by triple modular redundancy
- Radiation-hard by design cells
 - IMSE-CNM Sevilla

LHCb RICH Upgrade Prototype Beam Test

Beam test at CERN North Area

180 GeV/c positively charged hadrons: 67% protons, 30% pions, 3% kaons

PDMs on movable stage

Cherenkov radiator: plano-convex borosilicate lens (N-BK7)

Light-tight polypropylene box

- Thermally insulated
- N2 flow for humidity control
- Liquid cooling

Real time Cherenkov ring monitoring

LHCb RICH Upgrade Nanosecond Time Gate

RICH Detectors time resolution < 10 ps, prompt Cherenkov radiation

Signal peak (S) in photon hit time distribution

• FWHM ~ 0.5 ns

Nanosecond time gate around signal peak

- Red: 3.125 ns
- Blue: 6.250 ns
- Eliminate background photons (B and R) and sensor noise
- Hit occupancy reduction beneficial to PID

Time gate studies on RICH Upgrade Beam Test

 Reduction of uncorrelated background, signal peak unaffected

suppressed when gating

Quality Assurance Tests on the LHCb RICH Upgrade Components (1)

Components validation

- MaPMT
- ° CLARO, FEB, Backboard, Baseboard
- Digital Board
- Mechanics and support

CLARO QA tests

- ASICs validation and characterization
- Automatized pick-and-place station
- NI LabVIEW based control software
- Test protocol for acceptance/rejection

Quality Assurance Tests on the LHCb RICH Upgrade Components (2)

ECQA tests

- EC validation
- Parameters comparison with CLAROs QA tests

ECQA test station

- Light-tight box
- Air cooling system
- Temperature and humidity control
- Controlled light injection for characterization tests
- Up to 4 ECs tested simultaneously
 - Digital Boards for data readout

NI LabVIEW control software

Finite-state machine

Test protocol for acceptance/rejection

Great number of channels

- ECH ~400 modules
- ECR ~700 modules

12

RICH2 Columns Commissioning

ECs, PDMDBs and mechanics assambled at CERN for commissioning

PDM columns modularity

Columns into PD planes

RICH2 mechanics, readout and services assembled

On 23/07/2020 RICH2 full A-side test installation performed

	Chromati c Error [mrad]	Emission Point Error [mrad]	Pixel Error [mrad]	Total Error (resolution) [mrad]	Photon Yield
Current RICH1	0.84	0.76	0.60 PSF = 0.86	1.60	34
Upgraded RICH1	0.58	0.37	0.44	0.78	40
Current RICH2	0.48	0.27	0.19 PSF = 0.29	0.65	24
Upgraded RICH2	0.31	0.27	0.19	0.45	24

Conclusions

LHCb will increase luminosity to 2×10³³ cm⁻² s⁻¹ and read-out rate to 40 MHz

Mechanical structure of RICH1 modified to decrease photon occupancy in post-upgrade running conditions

RICH detectors opto-electronic chain is being replaced

- Compact modular structures: ECs
- MaPMTs and CLARO custom ASIC for single-photon detection and fast read-out
- FPGA based Digital Board for DAQ

PDM and mechanical components tested in beam experiments and in laboratory setups

QA procedures to validate all components installed during the Upgrade

- Almost all the ECs have been delivered at CERN from QA test locations
- RICH2 ready to be installed in the cavern

Backup Slides

Cherenkov Angle $\theta_{\rm c}$ VS Particle Momentum

Eur. Phys. J. C 73:2431 (2013)

LHCb RICH Hybrid Photon Detectors

Pixel HPD developed in collaboration with industry

- Vacuum technology, silicon pixel read-out
- \circ 32×32=1024 pixels, 0.5×0.5 mm²

484 HPDs, total area 3.3 m²

Quantum Efficiency

∘ ~27% @270nm

Silicon sensor bump-bonded to binary read-out chip (1.1 MHz)

Noise level: 145 e⁻

• Signal 5000 e- typ.

LHCb RICH Prototype Beam Test Setup

