Latest results of 3D pixel detectors constructed with pCVD diamond

> Harris Kagan Ohio State University for the RD42 Collaboration

International Conference on High Energy Physics (ICHEP 2020) Virtual Prague, Czech Republic July 29, 2020

Outline of Talk

- Introduction Motivation, RD42
- Diamond Detectors
- Results of 3D diamond pixel devices constructed with pCVD material
- Summary
- Future Plans

The Situation:

- Nextgen inner tracking layers $\rightarrow \sim 10^{16}$ hadrons/cm², \sim GHz/cm² rates
- Current detectors might survive ~12 months at the HL- LHC
- \rightarrow R&D for more radiation tolerant detector designs and/or materials

Diamond as a Detector Material:

• Properties:

radiation tolerance (→ William Trischuk's talk next) insulating material, high charge carrier mobility smaller signal than in same thickness of silicon (larger bandgap)

RD42 work:

 Investigate various detector designs: pad → full diamond as a single cell readout strip → diamond segmented w/multi-channel readout pixel → diamond sensor on pixel chips 3D → strip/pixel detector with design to reduce drift distance

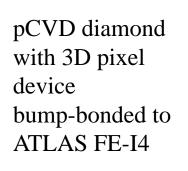
Introduction - The 2020 RD42 Collaboration

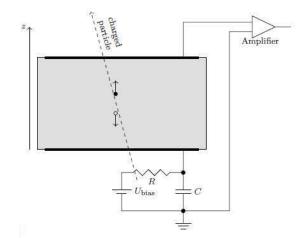
The 2020 RD42 Collaboration

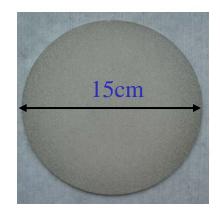
A. Alexopoulos³, M. Artuso²⁰, F. Bachmair²⁴, L. Bäni²⁴, M. Bartosik³, H. Beck²³, V. Bellini², V. Belyaev¹², B. Bentele¹⁹, P. Bergonzo³¹, A. Bes²⁷, J-M. Brom⁷, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷, J. Collot²⁷, J. Cumalat¹⁹, S. Curtoni²⁷, A. Dabrowski³, R. D'Alessandro⁴, D. Dauvergne²⁷, W. de Boer¹⁰, C. Dorfer²⁴, M. Dunser³, G. Eigen³⁰, V. Eremin⁶, J. Forneris¹⁵, L. Gallin-Martel²⁷ M-L. Gallin-Martel²⁷, K.K. Gan¹³, M. Gastal³, A. Ghimouz²⁷, M. Goffe⁷, J. Goldstein¹⁷, A. Golubev⁸, A. Gorišek⁹, E. Grigoriev⁸, J. Grosse-Knetter²³, A. Grummer²¹, B. Hiti⁹, D. Hits²⁴, M. Hoeferkamp²¹, T. Hofmann³, J. Hosselet⁷, F. Hügging¹, C. Hutton¹⁷, R. Jackman³¹, J. Janssen¹, R. Jennings-Moors³¹, H. Kagan^{13,◊}, K. Kanxheri²⁸, R. Kass¹³, M. Kis⁵, G. Kramberger⁹, S. Kuleshov⁸, A. Lacoste²⁷, S. Lagomarsino⁴, A. Lo Giudice¹⁵, I. Lopez Paz²², E. Lukosi²⁵, C. Maazouzi⁷, I. Mandić⁹, S. Marcatili²⁷, A. Marino¹⁹, C. Mathieu⁷, M. Menichelli²⁸, M. Mikuž⁹, A. Morozzi²⁸, F. Moscatelli²⁸, J. Moss²⁹, R. Mountain²⁰, A. Oh²², P. Olivero¹⁵, A. Pakpour-Tabrizi³¹, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, F. Picollo¹⁵, M. Pomorski¹¹ A. Porter²², R. Potenza², A. Quadt²³, F. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, O. Rossetto²⁷, D.A. Sanz Becerra²⁴, C. Schmidt⁵, S. Schnetzer¹⁴, S. Sciortino⁴, A. Scorzoni²⁸, S. Seidel²¹, L. Servoli²⁸, S. Smith¹³, B. Sopko¹⁸, V. Sopko¹⁸, S. Spagnolo²⁶, S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugu³⁰, C. Sutera², M. Traeger⁵, W. Trischuk^{16,}, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷ S. Wagner¹⁹, R. Wallny²⁴, J.C. Wang²⁰, J. Welch³¹, N. Wermes¹, J. Wickramasinghe²¹, M. Yamouni²⁷, J. Zalieckas³⁰, M. Zavrtanik⁹

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany ⁶ loffe Institute, St. Petersburg, Russia ⁷ IPHC, Strasbourg, France ⁸ ITEP, Moscow, Russia ⁹ Jožef Stefan Institute, Ljubljana, Slovenia ¹⁰ Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France ¹² MEPHI Institute, Moscow, Russia ¹³ The Ohio State University, Columbus, OH, USA ¹⁴ Rutgers University, Piscataway, NJ, USA ¹⁵ University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical Univ., Prague, Czech Republic ¹⁹ University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA ²² University of Manchester, Manchester, UK ²³ Universität Goettingen, Goettingen, Germany ²⁴ ETH Zürich, Zürich, Switzerland ²⁵ University of Tennessee, Knoxville, TN, USA ²⁶ INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, France ²⁸ INFN-Perugia, Perugia, Italy ²⁹ California State University - Sacramento, USA ³⁰ University of Bergen, Bergen, Norway ³¹ University College London, London, UK

31 Institutes

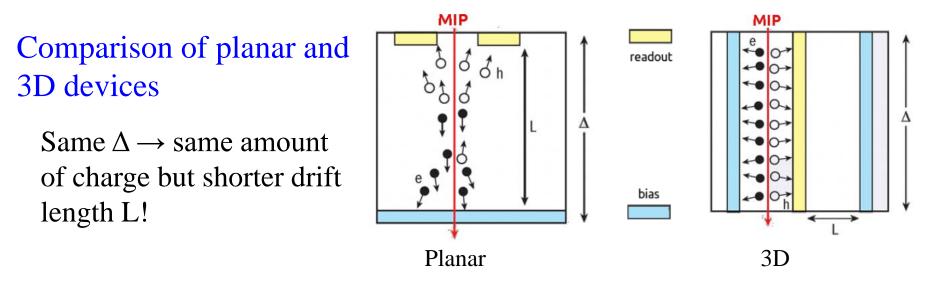

118 Participants


ICHEP 2020 – Virtual Prague, Czech Republic

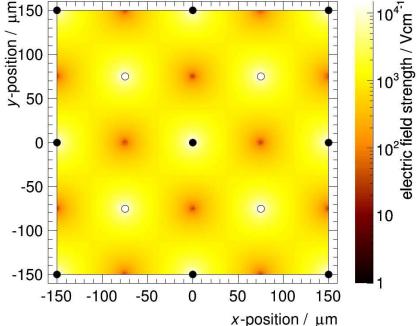

Harris Kagan

Introduction - Diamond as a Particle Detector

- Diamond detectors are operated as ionization chambers
- Poly-crystalline material comes in large wafers
- Metalization on both sides
 - Pad
 - Strip
 - Pixel (this talk)
- Connected (bump-bonded) to low noise electronics



After large radiation fluence all detectors are trap limited


- Mean free paths (schubweg) $\lambda < 50 \mu m$
- Need to keep drift length (L) smaller than mfp (λ)

- 3D geometry increases collected charge in detectors with limited λ
- But 3D geometry introduces low E-field regions

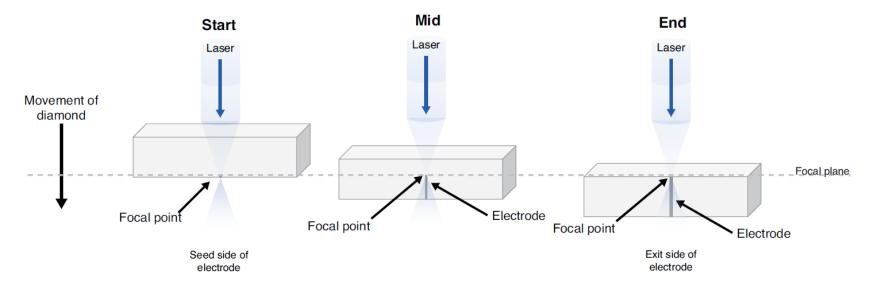
TCAD simulations to compare with measurements:
With large cells and large diameter columns →

lower field regions in saddle points

Cell size: 150µm x 150µm Voltage: 25V

from: G. Forcolin, Ph.D. Thesis Manchester University 2017

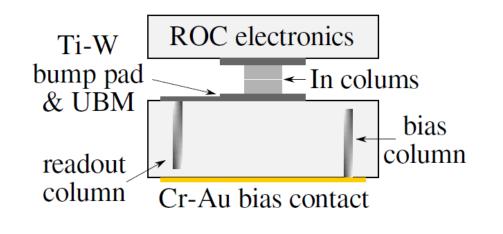
Simulations indicated with present technology, 3D diamond pixel devices would work well enough to test.

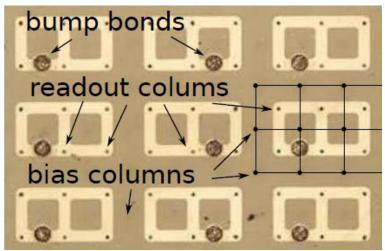

ICHEP 2020 – Virtual Prague, Czech Republic

Harris Kagan

Femtosecond laser (800 nm) is used to convert insulating diamond into a resistive mixture of various carbon phases: amorphous carbon, DLC, nano-diamond, graphite.

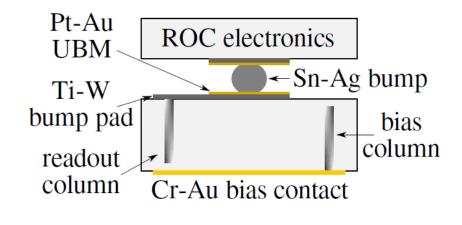
- Initial methods had 90% column yield → now >99% yield with Spatial Light Modulation (SLM)
- Initial column diameters 6-10 μ m \rightarrow now 2.6 μ m (with SLM)

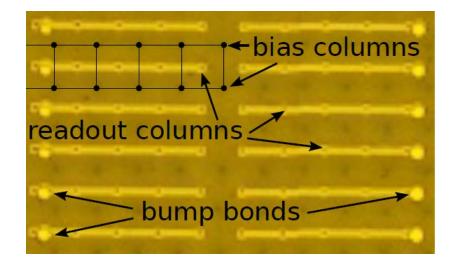




- Past Technological Successes:
 - Proved 3D works in pCVD diamond
 - Scaled up number of cells $\mathcal{O}(100) \rightarrow \mathcal{O}(4000)$
 - Reduced cell size: $150\mu m \times 150\mu m \rightarrow 50\mu m \times 50\mu m$ $\rightarrow 25\mu m \times 25\mu m$ (soon)
 - Reduced column diameter: $6 \sim 10 \mu m \rightarrow 2.6 \mu m$ $\rightarrow 1 \sim 2 \mu m$ (soon)
 - Increased column yield $\mathcal{O}(90\%) \rightarrow \mathcal{O}(99\%)$
 - Tested first 50µm x 50µm 3D device irradiated to 3.5×10¹⁵ 800MeV p/cm² → Small (if any) loss of charge
- Visible improvements at each device
 - Measurements consistent with TCAD predictions to first order

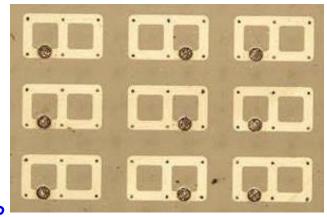
Preliminary Results (50µm×50µm cells)

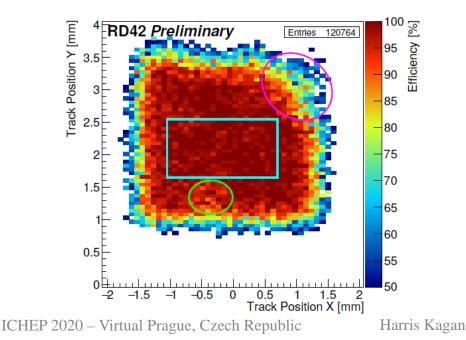


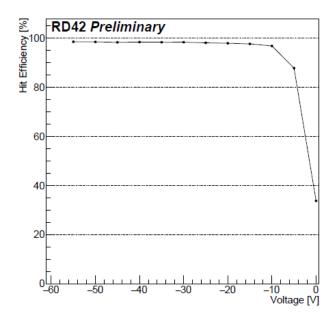

• Connection to bias and readout columns w/surface metallization

- Readout with CMS pixel readout 6 cells (3x2) ganged together
- Indium bumps on both ASIC (PSI46digv2.1respin) and detector
- Small gap (~15 μ m) to opposite surface for voltage isolation

Preliminary Results (50µm×50µm cells)

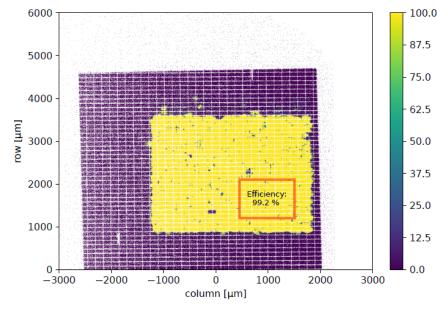


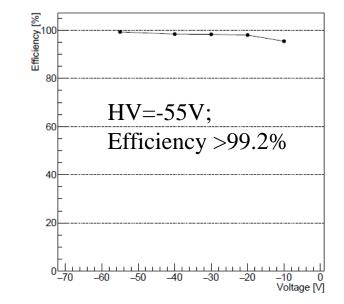


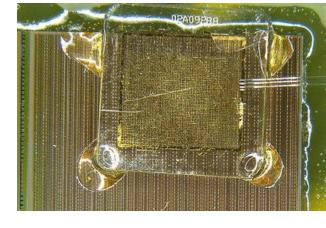

- Connection to bias and readout columns w/surface metallization
- Readout w/ATLAS pixel readout 5 cells (5x1) ganged together
- Tin-Silver bumps on ASIC (FE-I4); Pt-Au UBM on detector
- Small gap (~15 μ m) to opposite surface for voltage isolation

Preliminary Results (50µm×50µm cells)

- CMS pixel readout (3x2) ganging
- Indium bumps beam test @PSI
- Magenta area bump bonding issues
- Green area diamond surface issues
- Blue box-efficiency 99.2%; expect 99.6%

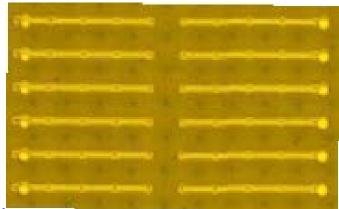


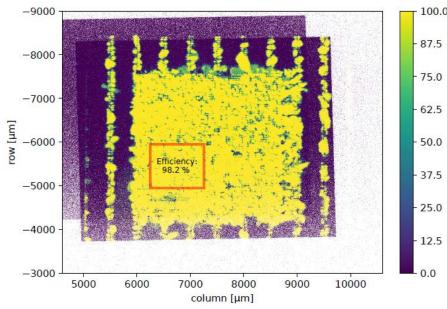


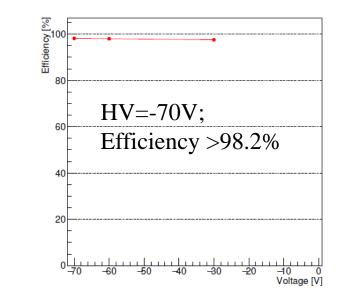


Preliminary Results (50µm×50µm cells)

- CMS pixel readout (3x2) ganging
- Indium bumps, re-bump-bonded
- Beam test @CERN
- LJU telescope (resolution \sim 3 μ m)
- Red box-efficiency 99.2%

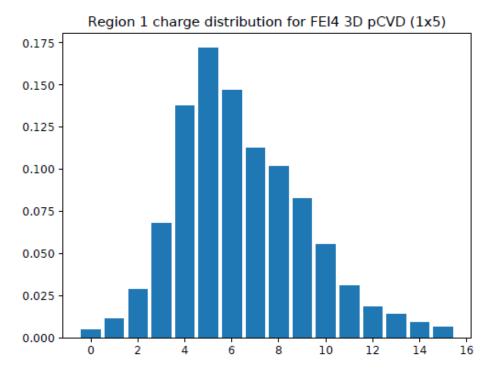


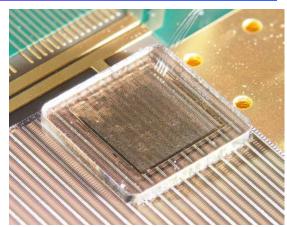

ICHEP 2020 – Virtual Prague, Czech Republic


Preliminary Results (50µm×50µm cells)

- ATLAS pixel readout (5x1) ganging
- Tin-Silver solder bumps (first device)
- LJU telescope (resolution ~3 µm)
- Red box efficiency >98.2%

Inefficiencies most likely due to processing





Harris Kagan

50µm×50µm 3D diamond with ATLAS pixels

- Results w/FE-I4 pixel readout-(5x1) ganging
 - TOT Distribution (5 TOT ~ 11,000e)

Mean TOT = $6.73 \rightarrow 14,800e$

Small TOT bins in the process of being calibrated

Summary

Lots of progress in 3D diamond pixel detectors 3D diamond pixel detector prototypes Parameter space now well defined 3D works in pCVD diamond Scale up (x40) worked Smaller cells (50µm x 50µm) worked Thinner columns (2.6µm) worked 3D diamond pixel devices being produced

- Steps from 150 μ m \rightarrow 100 μ m \rightarrow 50 μ m ... 25 μ m next
- Visible improvements with each step
- Efficiencies look good, still a bit to be understood
- Simulation needs some effort
- All devices produced work, to first order, as expected

Future Plans

3D diamond device irradiations to 10¹⁷ hadrons/cm²

- Tested 50µm x 50µm device irradiated @3.5x10¹⁵ 800MeV p/cm²
- Continue irradiations to 10¹⁶/cm² this coming year
- Test both (50µm × 50µm) and (25µm × 25µm) pixel detectors
- Thinner columns (<2µm) will be needed for 25µm x 25µm cells
- Irradiation to 10¹⁷/cm² next year

3D diamond pixel devices

- Ready for readout with RD53A chip this coming year
- Continue scale up (x10)
- Expand fabrication facilities
- Begin industrial production