Design and performance studies of the calorimeter system for an FCC-hh experiment

Jana Faltova* on behalf of FCC-hh calorimeter group

*Charles University

ICHEP2020, 28.7-6.8. 2020

Future Circular Collider (FCC) project

International collaboration (hosted at CERN) to study

- e+e- collider (FCC-ee)
 - Potential first step, √s = 90 365 GeV
- pp collider (FCC-hh)
 - o √s = 100 TeV
 - Ongoing R&D on Nb₃Sn 16 T magnets
 - Main goal of the project
- pe (FCC-he)

Conceptual Design Report for European Strategy Update 2019/20

https://fcc-cdr.web.cern.ch/

FCC-hh parameters

Operation scenario

- 10 years with ~250 fb⁻¹ / year
- 15 years with ~1000 fb⁻¹ / year
 - \rightarrow In total O(20) ab⁻¹ over 25 years of operation

Pile-up of 1000 in the ultimate scenario

5 x more than on HL-LHC!

FCC-hh		HE-LHC	HL-LHC
100		27	14
16		16	8.33
97.75		26.7	26.7
0.5		1.1	1.1
1	1	2.2	2.2
25	25	25	25
2400		101	7.3
28.4		4.6	0.33
0.54		1.8	12.9
1.1	0.3	0.45	0.15 (min.)
2.2		2.5	2.5
5	30	16	5 (lev.)
170	1000	460	132
8.4		1.4	0.7
	10 97 0 1 25 24 28 0. 1.1 2 5	100 16 97.75 0.5 1 1 1 25 25 2400 28.4 0.54 1.1 0.3 2.2 5 30 170 1000	100 27 16 16 97.75 26.7 0.5 1.1 1 1 2.2 25 25 25 2400 101 28.4 4.6 0.54 1.8 1.8 1.1 0.3 0.45 2.2 2.5 5 30 16 170 1000 460

FCC-hh reference detector

Reference detector to show feasibility of the project

Main problems

- High radiation
- High pile-up

FCC software (FCCSW)

- Full simulations (Geant4)
- Fast simulations (Delphes)

Calorimetry system

ECAL Forward and EndcapsLAr/Pb (Cu)

Central HCAL
Scintinllating tiles
/ Fe + Pb

- Inspired by ATLAS calorimetry, but with fine segmentation
- Documented here:
 Calorimeters for the FCC-hh

Radiation hardness

1 MeV neutron equivalent fluence for 30 ab⁻¹

Electromagnetic calorimeter (ECAL)

Finer lateral and longitudinal segmentation than in ATLAS

- Optimised for particle flow
- Pile-up suppression

Noble liquid (LAr) calorimeter

Radiation hardness, linearity, uniformity, stability

ECAL barrel

- Straight multilayer electrodes
- Inclined Pb plates -> increasing LAr gaps
 - Sampling fraction changes with depth
 - Longitudinal segmentation essential for calibration

Performance of ECAL

Energy resolution

- Sampling term ≤ 10%/√E
- Constant term well below 0.7%
 - -> Required energy resolution achieved

Noise term

- Electronic noise of ~300 MeV
- In-time pile-up of <µ> = 1000 leads to a noise term of 1.3 GeV
 - → Efficient in-time suppression is crucial

Measurement of Higgs self-coupling with $HH \rightarrow bb\gamma\gamma$

- Δm_{yy} = 1.3 GeV → precision of 7%

ECAL concept is also considered for e⁺e⁻ collisions

Optimisation of the electronic noise essential

Central hadronic calorimeter

Scintillator tiles + steel, Pb

Higher granularity than in ATLAS

- $\Delta \eta \times \Delta \phi = 0.025 \times 0.025$
- 10 instead of 3 longitudinal layers
 - -> Total of 0.3M channels

SiPM readout fast, low noise, little space

Calibration system

- Cs source (scintillators + SiPM)
- LEDs or laser (SiPM)

First tests with tiles and SiPMs in the laboratory

Performance of the calorimetry system

Full Geant4 simulations of single pions in calorimeters only

Conventional calibration

- Calorimeter cells clustering algorithm and simple calibration
- Sampling term of 48%/√E, constant term ~2%

Convolutional neural network (DNN)

- Make use of the fine granularity of the calorimeters
- Sampling term of 37%/√E achieved!

1.02

0.98

0.96

0.18

0.16

0.14

0.12

0.1 0.08

0.06

FCC-hh simulation (Geant4)

Benchmark $48\%/\sqrt{E} \oplus 2.2\%$

DNN 37%/√E ⊕ 1%

 π^{-} @ $\eta = 0.36$

 $\sigma_{E_{rec}}/\langle\,E_{rec}\rangle$

CERN EP R&D projects

Noble Liquid Calorimetry: Read-Out Electrode Design and Performance Optimization

Electronic noise crucial for FCC-ee

Noble Liquid Calorimetry: High Density Feed Through Design Investigations

10x more signal cables compared to ATLAS

Carbon Composite Cryostats

Ultra thin cryostats for future experiments

General SW framework & support for finalization of LAr calorimeter implementation into FCCSW

4 fellows at CERN

Summary

Reference calorimetry system for FCC-hh experiment

- Designed, optimised and documented
- Fulfils physics requirements based on simulations

R&D projects to develop necessary hardware started

References:

[1] Abada, A. et al., FCC-hh: The Hadron Collider, Eur. Phys. J. Spec. Top. **228**, **755-1107** (2019), https://doi.org/10.1140/epjst/e2019-900087-0

[2] Aleksa, M. et al., Calorimeters for FCC-hh, https://arxiv.org/abs/1912.09962