

Upgrade of the CMS Cathode Strip Chambers for the HL-LHC

Sven Dildick Rice University

On behalf of the CMS Collaboration

ICHEP2020 July 28 - August 6, 2020

The CMS Muon System

- The CMS detector uses three complementary systems to detect muons
 - ✓ Drift Tubes (DT) in the barrel region ($0.9 < |\eta| < 2.4$)
 - ✓ Cathode Strip Chambers (CSC) in the endcap (0.9 < $|\eta|$ < 2.4)
 - ✓ Resistive Plate Chambers (RPC) in barrel and endcap ($0 < |\eta| < 1.8$)
- Gas Electron Multiplier (GEM) chambers to be installed in the forward region (1.6< $|\eta|$ <2.8)

Cathode Strip Chambers

9.5 mm

- Chamber design
 - ✓ Trapezoidal multi-wire proportional detectors (6 gas gaps each)
 - ✓ 270 CSCs installed in 4 stations in each endcap (540 total)
 - ✓ Finely segmented cathode strip and anode wire readout
 - ✓ Time resolution ~3.4 ns; position resolution ~50–145 µm
- Chamber Operation
 - Passing charged particle ionizes Ar/CO₂/CF₄ gas mixture
 - Electron amplification in strong electric field
 - Electrons captured by anode wires; induced image charge of anode signal captured by cathode strips
 - ✓ Coincidences of signals in multiple layers indicate passage of charged particle

Electronics Design

CSC and CMS data acquisition system within Front End Driver crate

Mother Board

High-Luminosity LHC

- LHC will be upgraded to High-Luminosity LHC during LS3
 - ✓ 3000-4000 fb⁻¹ of 14 TeV pp collision data over 10 years
 - ✓ Instantaneous luminosity increases to x5 -x7.5 design
- New trigger and DAQ systems to handle increasing data in harsh radiation environment
 - ✓ Able to handle 750 kHz of L1-trigger rate with a latency of 12.5 µs

Upgrade of the CSC System

- Motivated by upgrade of the LHC:
 - ✓ Buffer overflows in CFEBs in forward region cause large inefficiencies
 - ✓ Memory limitations in ALCT FPGAs
 - ✓ Insufficient bandwidth in DMBs
 - ✓ Certain components not radiation-tolerant

100% DCFEB loss in ME2/1 without upgrade

- CSC detectors will be upgraded during LS2 and LS3 to maintain excellent muon detection capabilities for CMS physics
 - ✓ Nearly 1400 new electronics boards
 - ✓ Trigger data will be sent from GEMs to CSCs via optical links
 - ✓ Environmentally friendly gas mixture

Upgrade timeline

- LS2 (2019-2021): necessary on-detector refurbishments
 - ✓ On-chamber electronics (DCFEB, ALCT, LVDB)
 - ✓ Trigger Motherboard (OTMB), Services (LV, HV), GEM-CSC link
- LS3 (2024-2027): only access to peripheral racks needed
 - ✓ Data Motherboard (ODMB), backend boards (ATCA)
- Four work-streams spanning 2019-2020 during LS2

CSC LS2 Critical Path			Jun 2020	Jul 2020	Aug 20	20 Sep 2	020	Oct 2020	Nov 2020	Dec 2020
Critical	ME UXC	ME-x/1 Extraction ME-2/1 Ref		ME-2/1 Installation In		ME-3/1 Installatior	ME-4/1 Installation		n	RE-4
Path	ME SX5			urbishment	ME-3/1 Refurbishme		ME-4/1 Refurbishment		t	Installation

Post COVID-19 schedule for second half 2020

LS2 Electronics Upgrade

• Anode Local Charged Track board (ALCT)

- ✓ Current Virtex-E ALCTs do not have sufficient FPGA memory resources and output bandwidth
- ✓ Replaced with Spartan-6: 9-12x memory, 3-5 more logic, 2x faster

Cathode Front End Board (CFEB)

- ✓ Original ME1/1 DCFEBs to be replaced with the radiation-tolerant xDCFEBs (~30 kRad = 3x HL-LHC)
- ✓ ME2/1, ME3/1 and ME4/1 chambers will have CFEBs replaced with digital versions (ME1/1 DCFEB)
- ✓ Larger buffers, fast 20 MHz flash ADCs, Virtex-6 FPGAs
- Low Voltage Distribution Board (LVDB)
 - ✓ New LVDBs for ME1/1 provide more current for new xDCFEBs
 - ✓ New LVDBs for ME2/1, ME3/1, ME4/1 provide power for DCFEBs

ALCT mezzanine board

(x)DCFEB

LS2 Electronics Upgrade

• Trigger Motherboard (TMB)

- ✓ ME1/1 OTMBs will be replaced with faster optical versions and will be connected to GE1/1 boards
- ✓ ME2/1, ME3/1 and ME4/1 will be instrumented with faster optical versions (old ME1/1 OTMB) based on Virtex-6 FPGAs

- New HV 9-channel Master boards
 - ✓ Original CAEN HV system for ME1/1 has already been absorbed in new HV system

ME1/1 OTMB mezzanine

ICHEP 2020

LS3 Electronics Upgrade

- Data Motherboards (DMB) to be replaced with optical data motherboards (ODMB)
 - ✓ Upgrade of ME1/1 ODMBs to "ODMB7"
 - ✓ Upgrade of ME2/1, ME3/1, ME4/1 DMBs to "ODMB5"
 - ✓ Both boards based on Xilinx Kintex Ultrascale FPGA
 - ✓ Output bandwidths are up to 30 Gb/s.

ME1/1 ODMB7

- CSC Front-End Driver (FED)
 - ✓ New ATCA-based boards will deliver a total of up to 598 Gb/s of data to CSC DAQ

Electronics Refurbishment

• Chambers are extracted from the cavern to CSC lab at SX5 (surface)

- On-chamber electronics boards are replaced and tested in CSC lab at SX5
- Crew of ~20 people involved in refurbishment

Status of Phase-2 Installation

- Work streams 1-3 fully completed before COVID19; 4th work stream (ME-X/1 refurbishment) was just about to begin
- CERN shutdown from March 18th to June 2nd
- CERN starting back up again: ME-X/1 refurbishment will be shifted by 2.5 month and extended by 2 months
- ME-2/1 reinstallation started July 21

Irradiation longevity studies

- HL-LHC will expose CSC electronic components to intense radiation, in particular on-board electronics in inner-ring chambers
- Need radiation-tolerant optical transceivers, memory units,...
- New components being tested at
 - ✓ CHARM, CERN (mixed hadron spectrum)
 - ✓ Texas A&M University cyclotron (protons)
 - Texas A&M University reactor (neutrons and photons)
 - ✓ UC Davis cyclotron (protons)
- Each component receives dose up to 30 kRad (3 x HL-LHC)
 - ✓ Count single-event upsets (bit-flips caused by ionizing particles) and electronics dead-time in during beam exposure
- Example of test in June 2020: prototype EPROM board for inner-chamber ODMBs

Radiation test board for the ODMB EPROM tested at TAMU cyclotron

Gas mixture studies

- Gas mixture: 40% Ar + 50% CO₂ + 10% CF₄
 - ✓ Ar: provides gas gain of electronic avalanche in HV
 - ✓ CO2: quenching of spurious pulses to enhance time response
 - ✓ CF4: anti-aging additive which prevents wire etching and polymerization
 - (GWP ~6500 for 100 year)
- European regulations restrict usage of greenhouse gases including CF₄
- Alternative gas mixtures are being investigated at CERN using a prototype CSC
- Two-fold approach:
 - ✓ 1) Longevity properties of gases with less CF₄
 - 2) Performance studies with more eco-friendly gases
 - HFO-1234ze (GWP < 1 for 100 year)

CSC prototype at CERN: 30 x 30 cm2, 2 gas gaps, Standard CSC electronics and DAQ

Summary

- The CSC system will be upgraded for the HL-LHC during LS2 and LS3
- Extensive upgrade program with new electronics, new algorithms, interface with GEM system, and usage of new gas mixture
- LS2 operation currently ongoing. Three work-streams fully completed.
- Shift and extension of operations due to COVID-19 crisis
- CERN is opening up again; fourth work-stream (ME-X/1) has started
- Irradiation studies and alternative gas mixture studies ongoing

The speaker acknowledges funding from the US Department of Energy (DOE) Grant DE-SC0010103.