Development of the CMS MTD Endcap Timing Layer for the HL-LHC

Karri Folan DiPetrillo, on behalf of the CMS MIP Timing Detector group ICHEP 2020 28 July 2019

Overview

Motivation for precision timing at the HL-LHC

CMS Endcap Timing Layer design

Recent test beam results

Motivation for precision timing

Timing disentangles pile-up interactions

- average pile-up in Run 2: 50-60 pp-collisions per bunch crossing
- increases to 140-200 at the High Luminosity LHC
- expect even more pile-up at future colliders, eg. FCC-hh ~1000

200 PU ~30 ps time resolution

luminous region RMS time: 150 ps RMS z: 4.8 cm

vertices merged in z can be separated with timing

Impact on physics

~30 ps precision timing

- improves/maintains nearly every area of physics performance
- new potential for particle ID and long-lived particle searches

26% increase in effective luminosity for H→ZZ→4I

proton ID up to ~5 GeV kaon ID up to ~3 GeV

MIP Timing Detector

Provides 30-50 ps time stamp for every charged particle

Located between Calorimeter and Tracker

Endcap Timing Layer (ETL)

 up to 10x higher radiation than Barrel

 Low Gain Avalanche Detectors (LGADs)

Endcap Timing Layer design

- 1: ETL Thermal Screen
- 2: Disk 1, Face 1
- 3: Disk 1 Support Plate
- 4: Disk 1, Face 2
- 5: ETL Mounting Bracket
- 6: Disk 2, Face 1
- 7: Disk 2 Support Plate
- 8: Disk 2, Face 2
- 9: HGCal Neutron Moderator
- 10: ETL Support Cone
- 11: Support cone insulation
- 12: HGCal Thermal Screen

2 double sided disks
1.8 hits per track
50 ps per hit → 35 ps per track
Number of channels 8.6 x 10⁶
Active Area 16 m²

coverage: $1.6 < \eta < 3.0$ 0.31 < R < 1.2 m Z = 3 m from pp-interaction

Low Gain Avalanche Detectors

Ultra-fast silicon detectors with a highly doped p+ gain layer

Moderate internal gain: 10-30

LGAD design choices

Key sensor characteristics

Depletion region thickness	50 µm	Minimize rise time, sufficient charge, gain uniformity
Pad size	1.3x1.3 mm ²	Minimize capacitance, Occupancy ~1%
Sensor size	2x4 cm² (16x32)	Optimize wafer usage
Interpad gap	< 90 µm	Fill factor > 85%
Time res. after irradiation	< 40 ps	up to 1.7·10 ¹⁵ n _{eq} /cm ²

Recent prototypes from Hamamatsu (HPK), Fondazione Bruno Kessler (FBK) focus on

- improving radiation hardness
- increasing fill factor
- large arrays

FBK UFSD3

5x5 array from HPK

LGAD time resolution

$$\sigma_{\rm ioniz.} \sim 30 \rm ps$$

fluctuations in Landau ionization for 50 µm thick LGAD dominates at high gain

$$\sigma_{\text{jitter}} \sim \frac{e_n C_d}{Q_{\text{in}}} \sqrt{t_{\text{rise}}}$$

jitter contribution subdominant at high gain

Front-end ASIC: ETROC

A delicate balancing act

Low noise & fast risetime

$$\sigma_{\text{jitter}} \sim \frac{e_n C_{\text{d}}}{Q_{\text{in}}} \sqrt{t_{\text{rise}}} < 40 \text{ps}$$

Power Budget 1 W/chip, 4 mW/channel

ETROC innovations:

- Single TDC for both time of arrival and time over threshold
- Flexible low & high power amplifier modes

ETROC0: single analog channel

ETROC1: with TDC and 4x4 clock tree

ETROC2: 8x8 full functionality

ETROC3: 16x16 full size chip

Recent Test Beam Results

ETROC0 with HPK 3.1 sensors

ETROC0 board

Two ETROC0 data paths used in beam tests

- "Amplifier output" recorded through internal buffer and external 2nd stage amplifier
- At "Discriminator output" study contributions to time resolution from sensor due to Landau fluctuations, and pre-amp & discriminator jitter, design goal σ_t < 50 ps

Amplifier: Time resolution

Achieved 30-35 ps time resolution for pre-rad sensors operating above 20 fC!

high power mode 5-10% better time resolution than low power

timestamp measured w/ constant fraction threshold of 20% right plot has time reference contribution subtracted

Discriminator: Time Resolution

For pre-rad sensors operating above 20 fC, we obtain time resolution of 40-50 ps with 100% efficiency!

A great first result! Compatible with design target of 50 ps per hit

time resolution = $\sigma(t_0-t_{ref})$ after ToT correction) contribution from time reference is subtracted

Conclusions

- HL-LHC high pile-up environment motivates 30-50 ps precision timing layer
- Presented Endcap Timing Layer detector design, and R&D motivated design choices
- Presented new results from Feb 2020 test beam
 - first beam tests of prototype sensors and front-end ASIC
 - achieved 30-35 ps time resolution with amplifier output and 40-50 ps with discriminator
 - excellent first results within specs for final detector!

Backup

Amplifier performance

max amplitude and charge versus bias voltage

Amplifier performance

key ingredients for understanding jitter and time resolution

ETROC0 Discriminator procedure

Example time-walk correction

Example threshold scan optimize efficiency & time resolution

in this configuration, MPV is 14 fC \rightarrow 4.5 ns TOT, and the bulk is between 10-25 fC \rightarrow TOT of 4-5.5 ns

nominally operate at 15 DAC above baseline

ETL Modules and Service Hybrids

Service Hybrid

Module Design

ETL Detector Layout

Challenges at lower radii

Increased radiation

15% of sensors: $> 1 \times 10^{15} \text{ neq/cm}^2$ 80% of sensors: $< 8 \times 10^{14} \text{ neq/cm}^2$

Higher data rates for electronics

half-size service hybrids to keep rates < 1 Gb/s

Front & back of one disk

Time resolution performance

How to obtain 50 ps resolution per hit

$$\sigma_t^2 = \sigma_{\text{ionization}}^2 + \sigma_{\text{jitter}}^2 + \sigma_{\text{TDC}}^2 + \sigma_{\text{clock}}^2$$

