Precision Timing with the CMS MTD Barrel Timing Layer for HL-LHC

Nan Lu

California Institute of Technology

On behalf of the CMS Collaboration

ICHEP 2020 July 28, 2020

Overview of CMS MIP Timing Detector

Barrel Timing Layer (BTL)

BTL: LYSO bars + SiPM readout:

- TK / ECAL interface: $|\eta| < 1.45$
- Inner radius: 1148 mm (40 mm thick)
- Length: ±2.6 m along z
- Surface ~38 m²; 332k channels
- Fluence at 4 ab⁻¹: 2x10¹⁴ n_{eq}/cm²

Endcap Timing Layer (ETL)

ETL: Si with internal gain (LGAD):

- On the CE nose: 1.6 < |η| < 3.0
- Radius: 315 < R < 1200 mm
- Position in z: ±3.0 m (45 mm thick)
- Surface ~14 m²; ~8.5M channels
- Fluence at 4 ab⁻¹: up to 2x10¹⁵ n_{eq}/cm²

Time resolution of 30-50 ps for minimum ionizing particles (MIPs)

ETL

- Thin layer between tracker and calorimeters
- Hermetic coverage for $|\eta| < 3.0$

Nan Lu, ICHEP 2020

2

MTD TDR CMS-TDR-020

CMS MIP timing detector: pileup mitigation

- Phase-II upgrade: maintain excellent detector performance under high pileup of 140-200 collisions per bunch crossing, and severe radiation environment at HL-LHC
- MTD will be added to CMS to help meet the high-pileup challenge.

run in 2016 with individual high intensity bunches

Beam spot: time spread of 180 - 200 ps, largely uncorrelated with the spread in z

4D (x,y,z,t) vertex reconstruction:

- Vertex merging reduced from 15% to 1% in 200 PU scenario
- Disentangle overlapping vertices in space with precision timing.

Nan Lu, ICHEP 2020

CMS MIP timing detector: expand physics reach at HL-LHC

 $HH \rightarrow bb\gamma\gamma$ (200 Pileup Distribution)

- Reduction of pile-up enhances quality of particle reconstruction
 - 10 20% gain in di-Higgs significance
- Particle ID for low p_T hadrons, new reach for Heavy Ion Physics:
 - π/K separation up to 2 GeV, p/K separation up to 5 GeV
- Mass reconstruction of the long-lived particles

Nan Lu, ICHEP 2020

BTL sensor design - LYSO:Ce

Lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) as scintillator $3 \times 3 \times 57 \ mm^3$.

Stochastic fluctuations in the time-of-arrival of photons detected at the SiPM:

 $\sigma_t^{photostatistics} \propto \sqrt{1/N_{p.e.}} \propto \sqrt{1/(E_{dep} \times LY \times LCE \times PDE)}$

- Dense (7.1 g/cm³): a MIP deposits E_{dep}
 ~4.2 MeV including impact angle (0.86 MeV/mm)
- Bright: light yield (LY) ~40k photons/MeV.
- Excellent radiation tolerance

Nan Lu, ICHEP 2020

BTL sensor design - SiPM

Silicon Photomultipliers as photo sensors

- Compact, fast (single photon resolution of 100 ps), insensitive to magnetic fields, radiation hard
- SiPM active area of 9 mm², coupled to LYSO using glue: light collection efficiency (LCE) 15%
- Optimal SiPM cell size: 15 µm, balance between radiation tolerance and photon detection efficiency
- Gain: $1.5 4 \times 10^5$
- Photo detection efficiency (PDE) : 20-40%

BTL sensor performance in test beam

- Timestamp of a MIP traversing BTL: $t_{Ave} = (t_{left} + t_{right})/2$
- Achieved 30 ps time resolution per BTL sensor before irradiation

Precision Timing with CMS MTD Barrel Timing Layer

SiPM dark count rate noise mitigation

• Dark count rate (DCR) noise contributes to ~50 ps

on time resolution after 3000 fb⁻¹

- Radiation damage increases SiPM DCR up to 55 GHz
- DCR noise mitigation:
 - CO₂ cooling SiPM temperature to -30(-35) °C
 - DCR decreases by a factor 1.8 every 10 °C .
 - Annealing of SiPMs at 20 °C during shutdowns
 - Optimizing SiPM operating point
 - Dedicated noise cancelation circuit in front-end ASIC

BTL TOFHIR ASIC: Time Of Flight at High Rate

9

TOFHIR2

8.5 x 5.2 mm²

Challenges:

- Reduce impact of DCR noise and pileup
- High rate (2.5 MHz MIP + 5 MHz low E hits/channel)
- Dynamic range variation: decrease of p.e. during operation
- Power budget 15mW/channel

TOFHIR versions:

- TOFHIR1 (UMC 110 nm): available, enabled system level testing
- TOFHIR2 (TSMC 130 nm): new frontend design, DCR noise cancellation circuit
 - First MPW submission Feb 2020
 - ASIC received May 2020 and under testing since July 2020
 - Next MPW submission and engineering run in Q1 2020 and Q2 2021
 - May shift because of COVID knock-on effects

Ted Liu's talk at ACES 2020: https://indico.cern.ch/ event/863071/contributions/3738906/

TOFHIR1 single channel σ_t ~21 ps with laser pulse of 200 p.e.

- Same slew rate as 8k p.e. LYSO pulses
- Adding LYSO photo-statistics contribution resolution of 31 ps (before SiPM irradiation) expected

Terms contributing to time resolution

Photostatistics and DCR noise contributions dominate timing resolution

- Photostatistics: 25 35 ps, stochastic fluctuations in the time-of-arrival of photons detected at the SiPM
- DCR noise: < 60 ps after 3000 fb⁻¹
- Electronics: 7ps
- Digitization: 6 ps
- Clock distribution: 15 ps

Study of in-time and out-of-time pileup contributing to time resolution

• Negligible readout noise induced by gamma-ray (192 rad/h) and neutron flux ($3.17 \times 10^6 [1 \text{ MeV } n_{eq} \text{ cm}^{-2} \text{s}^{-1}]$) at @BTL $|\eta|=1.45$ expected at HL-LHC: less than 10 ps and 2 ps contribution to total time resolution of the BTL sensor performance.

BTL module design

Motivation of the BTL module design:

- Minimize distance between the SiPM's and ASICs for best possible signal integrity
- Encapsulate variability of the dimensions of the module components
- Simplify tray assembly

Schematic view of R- ϕ cross section of BTL module

BTL layout

• Coverage: |η| < 1.45 Tracker Support Tube Surface ~38 m² • 332k channels **BTL thickness** BTL detector mounted on inner R1150 38 mm surface of Tracker Support Tube EF board cold plate - LYSO:Ce crystal CO₂ cooling loop SiPM **BTL Module:** 2 trays in z 1x16 crystals (32 channels) Crystal bar SiPMs **BTL Read-out Unit:** 3x8 modules (768 channels) **BTL Tray:** 6 Read-out units (4608 channels) **BTL detector** 72 trays: 2(z) x 36(φ) 332k channels

Summary

- CMS phase-2 upgrade will include a new MIP timing detector with a time resolution of 30-50 ps to mitigate harsh pile-up condition at HL-LHC
- The CMS Barrel Timing Layer will be based on LYSO:Ce crystals read out with SiPMs
- Expand CMS HL-LHC physics reach: enhancement of physics object reconstruction, open up new territory in CMS Heavy Ion Physics and long lived particle search

CMS-TDR-020

Backup slides

CMS MIP timing detector and pileup mitigation

Line density of the collision vertices at LHC and HL-LHC

e.g. peak density for 200
 PU: 1.9 collisions/mm

Reduction of pileup tracks incorrectly associated to the primary vertex:

reduced from ~20 to ~10 with MTD at

line density of 1.9 collisions/mm.

Nan Lu, ICHEP 2020

Particle ID with MTD

17

$$\frac{1}{\beta} = \frac{c(t_0^{\text{MTD}} - t_0^{\text{evt}})}{L}$$

L: path length of a track from the beam line to the MTD. t_0^{MTD} : particle arrival time is provided by the MTD hit t_0^{evt} : common event start time,

taken to be the time of the most populated 4D vertex

MTD: Radiation doses and fluences

				3000 fb^{-1}		$1.5 \times 3000 \text{ fb}^{-1}$	
Region	$ \eta $	<i>r</i> (cm)	<i>z</i> (cm)	n_{eq}/cm^2	Dose (kGy)	n _{eq} /cm ²	Dose (kGy)
Barrel	0.0	116	0	1.65×10^{14}	18	2.48×10^{14}	27
Barrel	1.15	116	170	1.80×10^{14}	25	2.70×10^{14}	38
Barrel	1.45	116	240	1.90×10^{14}	32	2.85×10^{14}	48
Endcap	1.6	127	303	1.5×10^{14}	19	2.3×10^{14}	29
Endcap	2.0	84	303	3.0×10^{14}	50	$4.5 imes 10^{14}$	75
Endcap	2.5	50	303	7.5×10^{14}	170	$1.1\! imes\!10^{15}$	255
Endcap	3.0	31.5	303	1.6×10^{15}	450	2.4×10^{15}	675

SiPM Annealing

19

Nan Lu, ICHEP 2020

SiPM end-of-operation specifications

SiPM parameter	Specification	FBK-NUV-HD	HPK-S12572	HPK-HDR2
Active area	_	$\sim 9 \text{ mm}^2$	$\sim 9 \text{ mm}^2$	$\sim 9 \text{ mm}^2$
Cell pitch	$< 20 \ \mu m$	15 μm	15 µm	15 µm
Cell recovery time	< 10 ns	7 ns	8.5 ns	< 10 ns
Capacitance	< 600 pF	530 pF	295 pF	585 pF
Number of cells	> 20k	$\sim 40 \mathrm{k}$	$\sim 40 \mathrm{k}$	$\sim 40 \mathrm{k}$
V _{br} (-30 °C)	_	34.2 V	63.0 V	35.8 V
dV_{br}/dT	_	41 mV/ °C	59 mV/ °C	37 mV/ °C
$\delta V_{\rm br} / 10^{13} n_{\rm eq} / {\rm cm}^2$	$\leq 0.2 \text{ V}$	< 0.1 V	0.2 V	< 0.1 V
DCR-T coefficient	-	1.76	1.90	1.79
ENF	< 1.1	< 1.05	1.07	< 1.05
Parameters after 3000 fb ⁻¹				
Optimal OV	> 1V	1.6 V	1.5 V	1.2 V
PDE	_	15%	13%	23%
Current/device	_	1.32 mA	0.77 mA	1.30 mA
Static power consumption	$\leq 50 \text{ mW}$	50 mW	50 mW	50 mW
Gain	$\geq 1.3 \times 10^5$	2.1×10^{5}	1.45×10^{5}	1.55×10^{5}
DCR/SiPM	_	42 GHz	37 GHz	55 GHz
PDE/\sqrt{DCR}	> 2.0	2.3	2.1	3.1

Nan Lu, ICHEP 2020

TOFHIR DCR cancellation

Mitigate DCR noise and baseline fluctuations

- At the highest DCR the time resolution expected to improve by a factor 3.5
- Inverted and delayed pulse added to the original pulse, delay line is approximated by a RC net
- Short output pulse (< 25 ns)

Current mode front-end

Reference Ted Liu's talk at ACES 2020: https://indico.cern.ch/event/863071/contributions/3738906/

Nan Lu, ICHEP 2020

120

100

Evolution of SiPM operating parameter during HL-LHC life time

DCR / SiPM [GHz] optimized bias (FBK-thin-epi-15) 80 60 40 20 2500 500 1000 1500 2000 Integrated Luminosity [fb⁻ eq²⁰⁰⁰⁰ constant bias = +1.5V OV (S12572-015C) optimized bias (S12572-015C) 0001 Signal constant bias = +1.5V OV (HDR2-15) optimized bias (HDR2-15) constant bias = +1.5V OV (FBK-thin-epi-15) optimized bias (FBK-thin-epi-15) 12000 10000 8000 6000 4000 2000 0 500 1500 2000 1000 Integrated Luminosity [fb⁻

optimized bias (S12572-015C)

optimized bias (HDR2-15)

Precision Timing with CMS MTD Barrel Timing Layer

4000

4000

22

BTL Readout Unit

- Readout unit (RU): 768 SiPM channels, 24 modules
 - 4 Front-end cards, one concentrator card, two Power Convertor Cards

Reference: Ted Liu's talk at ACES 2020: https:// indico.cern.ch/event/863071/contributions/3738906/

Integration of RU prototype1 with backend DAQ is being carried out at CERN

BTL construction model

Nan Lu, ICHEP 2020