Level-1 Track Finding at CMS
for the HL-LHC

Andrew Hart for the CMS Collaboration
Rutgers, The State University of New Jersey




The High-Luminosity LHC

* The High-Luminosity LHC (HL-LHC) upgrade in 2025-2027 is expected to achieve luminosities up to
7.5x103%cm2st:

— Great opportunities for physics
- Very challenging at every stage, from triggering to data analysis
* How do we ensure that we get the most out of this data?

- A key component of the strategy for CMS is to introduce tracking in the Level-1 (L1) trigger

— Here we show the latest results from the L1 tracking system currently being developed




Triggering with 200 pileup

* Many exciting possibilities with ~4000 fb-1 datasets expected
from the HL-LHC:

- Precision measurements of the Higgs boson and its interactions,
including the self-coupling

- Extended discovery reach for beyond-the-standard model (BSM)
physics

— Observe rare standard model processes that could be sensitive to
BSM physics

* The cost of these physics possibilities is huge amounts of pileup:
- Expect an average of 200 overlapping pp collisions per bunch crossing
* Trigger system has to reduce the 40 MHz input rate to ~7.5 kHz:

— Tracking at L1 is central to accomplishing this
- Without tracking, L1 output would be ~4000 kHz at 200 PU

CMS Average Pileup, pp, 2018, Vs = 13 TeV
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Tracking at L1

e Usually, in order to reduce trigger rates, we
increase momentum/energy thresholds:

— This can obviously hurt physics potential
- Also insufficient by itself at HL-LHC rates

* L1 tracking provides a powerful alternative:

— Improved muon p; resolution

- Better e/y/Tidentification

— Ability to associate tracks with vertices
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* New pixel and outer tracker:

— All silicon as with the current CMS tracker

- Increased granularity in order to handle increased occupancies

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
E’IZOO—‘ / / / . P - _— 16
B 1000° | | | | | 18
Outer Tracker goo-— I| || || || || ~20
(PS vs 25 modules) . - l, | | | | —~22
=> used at L1 - GRS NN AL L LN LN :: :: :, :, :, fg.g
- | | | — L
e NP R T T A A
(1x2 vs 7 chip 2002 e b b | \ ! \ \
modules) o A T ! ! S l' ! 10
= H _‘ | 1 I | | ] | | | | | | | ‘ | | I I | | 1 | | | ] |
> not used in L1 0 500 1000 1500 2000 2500  z [mm)]

6



D modules

» Two-sided modules in outer tracker enable front-end p;

. 9__.Q . “Stub” fail
discrimination: T—— oss ¢
— Pairs of clusters inconsistent with a p; > 2 GeV track rejected
Data reduction of 10-20 g A 2
- ata reduction o =
: BRREREE
* Stubs formed from correlated pairs of clusters consistent with a x <700 um
p;>2 GeV track: -
— These are the inputs to the L1 tracking algorithm
Pixel-strip (PS) modules Strip-strip (25) modules
» Top sensor: 2X960 strips, 2.4 cm long, 100 * Both sensors are strips
um pitch + 2x1016 strips, 5 cm long, 90 pm pitch
* Bottom sensor: 32X960 pixels, 1.5 mm X 100
um
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Data, Trigger & Control (DTC)
boards perform stub pre-
processing and distribute stubs to

Track Finding Processor (TFP)
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Matches in other layers/disks

* From these seeds, helix parameters and projections to other layers/disks are
calculated:

— Assume tracks originate from beamline

* The projections are used to calculate residuals and match stubs in additional

layers/disks:
— Thisyields full tracks that are the inputs to the final track fit
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Duplicate removal

* The pattern recognition naturally produces
duplicate tracks for a given charged particle:

— Most come from redundancies in the seeds:

* e.g.,acentral charged particle will usually be seeded
three times: L1L2, L3L4, L5L6

— Some come from nearby stubs in a given layer
yielding very similar tracks

* These have to be removed before track fitting:

— Currently merge any tracks that share =3 stubs
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* The final fit of the tracks is done with a Kalman filter:

— Roughly similar to what is done in the offline tracking of CMS
— Starts with coarse helix parameters from the seed

— Adds stubs one by one, updating the helix parameters with greater and greater precision
* By default, there is a beamline constraint and four track parameters are fit:

— Can easily remove this constraint and also fit for transverse impact parameter (d,)

*

o
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L1 tracking performance

CMS phase-2 simuati 14 TeV, 200 PU
. go 3 Tracks (ggr>¢25(g(¢;at\c/)z
* Expected performance of L1 tracking:

— High efficiency across the entire tracker

- Good z, resolution:

* Critical for vertex association and PU mitigation
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Displaced tracking

* Displaced tracks at L1 is an exciting extension to the baseline algorithm currently under
active development

* Achieved via two additions/modifications:

— Seeds: three triplet seeds added; projected to additional layers without a beamline constraint

— Fit: transverse impact parameter added to fit; 5-parameter Kalman filter fit
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Displaced tracking

* Initial results promising:

- Displaced tracks reconstructed with good efficiency up to |dy|~5 cm

— Overall track rate increases by ~40% (conservative estimate) h(125) .~

~,

* Greatly increases sensitivity of Higgs boson decays to exotic long-lived particles: ¢

- H->0d->4 jets, where ¢ is a new long-lived scalar q
- Challenging without displaced L1 tracking because of the low H; of the signal
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https://cds.cern.ch/record/2650162/

Electron performance

Brem in the inner tracker:
e With PV constraint: no track at all

* Electron tracking challenging due to large bremsstrahlung: e

o

— Mitigated in offline software with a Gaussian sum filter, which is not employed in the L1 trigger

* Electrons can appear as displaced tracks if most of the bremsstrahlung occurs before
the outer tracker:
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— Displaced tracking can recover some of these tracks 1000
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Firmware implementation

InputRouter
. . . . utStub
* Track finding algorithm implemented as an L
. VMRouter
FPGA deSIgn AllStub VMStubs(TE/ME)
* Firmware organized as a series of TrackletEngine
processing modules with memory StubPair

> TrackletCalculator

modules between each step:

TrackletProjection TrackletParameter

— Most processing modules implemented in
Xilinx Vivado HLS (C++) VMProjection AllProjectiol

— Kalman filter largely implemented in VHDL MatchEngine
CandidateMatch

ProjectionRouter

= Individual processing and memory modules
connected together in a top-level VHDL
module

MatchCalculator

FullMatch

PurgeDuplicates n

MergeTrack 17

Kalman Filter CleanTrack
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Test stand @ CERN

* Track-finding hardware based on ATCA platform, the CMS standard for HL-LHC
upgrades

* Multiple subchains of processing modules have been tested successfully already

Serenity: DTC processing Apollo: track finding processing boards

- Carrier card provides services - Service Module provides infrastructure components

- Daughter cards host FPGAs for data processing - Command Module contains two large FPGASs,
optical fiber interfaces & memories
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cds:2646388 arXiv:1911.06452


https://cds.cern.ch/record/2646388
https://arxiv.org/abs/1911.06452

Lo U on

* L1trackingis a key part of the strategy in CMS for making the most of the challenging
data that will be delivered by the HL-LHC

* The algorithm combines a road search for pattern recognition with a Kalman filter fit:

— Simulations shows that the algorithm performs very well

— Implemented as an FPGA design with processing modules written in Xilinx Vivado HLS and
VHDL

— Multiple subchains of processing modules have been successfully demonstrated in actual
hardware

* Thefocus now is on finalizing the system specifications, and demonstrating more
extensive chains of modules in hardware
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