Calibrating the DUNE LArTPC Detectors for Precision Physics

Viktor Pěč (University of Sheffield) for the DUNE Collaboration

40th International Conference on High Energy Physics July 29, 2020

DUNE - Deep Underground Neutrino Experiment

Far detector (FD):

- LArTPC
- 1.5 km underground
- 4 × 17-kt modules (10 kt fiducial)

P.Dunne, talk 271

Near detector (ND)

- 3 components:
- LArTPC, GArTPC, non-TPC

Movable off-axis (PRISM)

Physics Requirements

Performance drivers

- Oscillation physics: CP-violation and neutrino mass ordering
 - Energies O(GeV)
 - Uncertainty on energy scale < 2% (5%) for leptons (hadrons)
- Supernova neutrino burst
 - Energies O(MeV)
 - Energy resolution 20-30%

Other considerations under study

- Baryon number violation and other BSM
- Atmospheric neutrinos

- ...

DUNE experiment physics, S.Jones, talk 262

DUNE FD Technical Design Report Vol.II:Physics arXiv:2002.03005

LArTPC - Liquid Argon Time Projection Chamber

Major inputs on detector response for TPC calibration

Recombination Electron-ion recombine after ionisation

Drift velocity/E-field Essential for drift coordinate

Electron lifetime Attachment on impurities

Electron diffusion Affects signal shape and distribution

across wires

Electronics gain Important for absolute energy scale

DUNE FD Technical Design Report Vol.IV:Single-phase arXiv:2002.03010

Strategy

- Establish connection between physics measurement sensitivities and calibration requirements
- Develop procedures to:
 - Determine detector parameters
 - Drift velocity, electron lifetime, ... (previous slide)
 - Measure detector response to "standard candles"
 - Stopping power of through-going muons
 - Stopping muons
 - Michel electrons
 - Delta-ray electrons
 - π^0 decay
 - Neutron capture
 - Natural radioactivity

Sources for Calibration

Cosmogenic/-beam/intrinsic sources

- Cosmic muons
- Beam neutrino events
- Atmospheric neutrinos
- Intrinsic radioactive isotopes

Dedicated calibration devices

- Ionisation laser system
- Pulsed neutron source
- Cf/Ni source (9 MeV γ) under consideration

Cosmic Muons

From MC Simulations at FD:

- ~4700 muons in single 17-kt module per day
- Only ~90 a day stopping inside TPC

Advantages

- Rich source
 - e lifetime
 - Recombination
 - Alignment
 - δ -rays
 - Michel electrons
 - Stopping muons:
 - MIP + Bragg peak

Challenges

Low statistics

39Ar

- Naturally present ~1 Bq/kg
- β-decay with Q = 565 keV
- well defined spectrum = "standard candle"

Advantages

- High statistics
- Uniform
- Sensitive to:
 - e lifetime
 - Recombination
 - Electronics noise

Challenges

- Low energy only
- Unknown position in drift direction
- Triggering/DAQ

MICROBOONE-NOTE-1050-PUB

⁴²Ar/⁴²K also under consideration

μΒοοΝΕ

JINST 15, P02007 (2020)

photon candidate

photon candidate

photon candidate

photon candidate

photon candidate

proton candidates

photon candidate v. → μ + π⁰ + X MicroBooNE BNB data event

Advantages

- Beam neutrino interactions
- Cosmic muon interactions
- 2γ invariant mass = "standard candle"
- Electromagnetic energy scale

Challenges

- Difficult selection
- Low statistics

Ionisation Laser System

- Multiple periscopes → coverage
- Aperture in field cage considered
- Test in ProtoDUNE Run 2 end of next year

Advantages

- High statistics
- Well defined tracks
- E-field
- Alignment
- e lifetime (being investigated)

Challenges

Limited coverage depending on design

Precision rotation and translation

Mirror

Pulsed Neutron Source

- Neutron anti-resonance at 57 keV → LAr nearly transparent → travel far
- Neutron capture: n + ⁴⁰Ar → ⁴¹Ar + 6.1-MeV γ's
- Dedicated measurements at Los Alamos
 - ACED n-capture gamma spectrum
 - ARTIE neutron elastic scattering anti-resonance

Candidate DD generator

Advantages

- Triggered
- High statistics
- Neutron capture
- γ energy scale + resolution
- *e* lifetime (to be investigated)

Challenges

- Non-uniform coverage
- Difficulties in associating scintillation light with individual interactions

ProtoDUNE and SBN Programme

ProtoDUNE on test beam at CERN

- 2 prototype modules: Single-/Dual-phase
- + Development of techniques to be used in ND and FD
 - DUNE FD calibrations already being informed by ProtoDUNE SP
- + Measure LAr properties at same E-field & drift distance
- Space charge build-up due to cosmics (no problem for ND and FD) see M. Mooney, talk 275

SBN at Fermilab

- LArTPCs: SBND, MicroBooNE, ICARUS
- Benefit of development of calibration techniques before DUNE starts

ProtoDUNE Single-phase

Also see R.Diurba: talk 276, poster 530

Summary

- Requirements on performance driven by v oscillation physics and low-energy astrophysical neutrino physics
- Outlined strategy to develop calibration techniques
- Combined use of intrinsic sources and dedicated devices
- DUNE will benefit from robust LArTPC calibration programme

Measurement	Tools
Alignment	Cosmics, Laser
E-field	Cosmics, Laser
e lifetime	Cosmics, ³⁹ Ar, Laser, PNS
Recombination	Cosmics, ³⁹ Ar, Beam
Energy scale	Cosmics, Beam, PNS, 39Ar

* PNS – Pulsed Neutron Source

