next-generation ultra-compact calorimeters based on oriented crystals

ICHEP 2020, July 30th

Mattia Soldani

on behalf of the **ELIOT** experiment

Università degli Studi di Ferrara INFN Sezione di Ferrara

<u>mattia.soldani@fe.infn.it</u>

which crystals?

how to probe this?

where to exploit this?

electromagnetic radiation builds up coherently → for ≈GeV particles, high-intensity radiation emission, peaked at high photon energy

lattice effects the strong crystalline field

small particle-to-axis angle (within few mrad)

$$\Theta_0 < \frac{U_0}{mc^2}$$

 $\Theta_0 < rac{U_0}{mc^2}$ less pronounced effects attained <u>within 1°</u>

high energy (≈10 GeV) → Lorentz contraction

$$\chi = \frac{\gamma E}{E_0} > 1$$
 $E_0 = \frac{m^2 c^3}{e\hbar} = 1.32 \cdot 10^{18} \frac{V}{m}$

= Strong Field

(U_0 and E being the axis potential and the corresponding field in the lab frame \rightarrow crystal-dependent)

lattice effects the strong crystalline field

enhanced Bremsstrahlung

quantum synchrotron radiation (in which electron fractional energy loss is non-negligible) → more <u>intense hard photon emission</u>

axis

enhanced Pair Production

coherent interaction dominates over the Bethe-Heitler process

→ overall <u>PP cross section strongly increased</u>

electromagnetic shower is way more compact

or equivalently

effective radiation length X_0 is much shorter

scintillators and Cherenkov emitters commonly employed in HEP electromagnetic calorimetry: lattice effects are neglected

the input photon or electron/positron showers can <u>fully develop in a much lower</u> <u>thickness with respect to the current state-of-the-art detectors, with the same light yield</u>

→ enhanced compactness → budget-saver

status of the investigation

PbWO₄

- scintillator, with well-peaked light emission in the blue
- optically transparent
- exploited by the CMS ECal → well known
- high density, high Z
- short X_0 (8.903 mm) and Molière radius
- cheap fabrication into big samples and with good crystalline quality

•	axes properties	[001]	[100]	
	interatomic pitch	12.020 Å	5.456 Å	
	U_{o}	~600 eV	~700 eV	
	Θ_o		~1 mrad	
	SF threshold (χ =1)		~30 GeV	

since 2017, tests with **electron beams** at

• CERN H2, H4 at **120 GeV/c** $\chi \sim 4 \rightarrow \text{full SF regime}$

• DESY T21 at **5.6 GeV/c** $\chi \sim 0.2 \rightarrow$ below SF threshold, but still within its regime

output radiation

study of the **energy loss** (emerging as electromagnetic radiation) inside the sample:

- full agreement between measured spectra and simulations
- on-axis net energy loss indicates
 a 5-fold reduction of the crystal
 X₀ with respect to the off-axis
 amorphous-like case

2018 @ CERN light yield enhancement

- SF angular range: enhancement peak within ~2 mrad around the axis, while the effect extends up to several mrad (→ ~1°)
- 2. SiPM-based sample **scintillation light readout**: axial-to-random (i.e. amorphous-like) signal peak ratio is fully compatible with the simulations

0.0012

0.0010

0.0006

0.0002

0.0000

1000

2000

SiPM signal S [ADC]

3000

4000

5000

2019 @ DESY radiation at the GeV scale

energy loss studies in the sub-SF energy regime and in a wide angular window: axis still affect the radiation spectra macroscopically; effect angular range is very large and transition to amorphous-like configuration is smooth

applications **HEP fixed-target experiments**

- forward geometry → particles enter the detector with small angle, small transverse area
- in case of large-angle events, performance will equal that of the current state of the art
- a structural compromise between oriented (front side) and random layers (rear side): optimal trade-off between compactness, cost and mechanical alignment precision

note: the higher the particles energy, the stronger the shower enhancement, \rightarrow in the end, the shower peak longitudinal position is independent on the initial energy

20 cm

applications KLEVER Small Angle Calorimeter

~140 MHz input K_L), i.e. small X_0 and large λ_{int}

→ this is a job for an oriented crystal!

candidates

- **PWO** scintillator, well-known
- (lead fluoride) Cherenkov emitter → good time resolution PbF₂

2 cm

applications sampling calorimeters

passive layers oriented crystalline metals, e.g. tungsten

- compact and lighter
- budget-friendly
- possibility of improving the energy resolution

active layers

standard plastic scintillator and readout system

→ well-known technology

photon converter candidate

test at CERN H2 in 2018 with a Bremsstrahlung photon beam (endpoint 120 GeV) and a [111] tungsten oriented sample, KLEVER beamline

(results to be published soon...)

applications satellite-borne γ observatories

- typical event: high-energy (\$100 GeV) photons from well-localised, point-like sources
- lightweight detector with no energy resolution limitation → excellent for the rocket payload and for the operation budget
- currently available satellite pointing systems can aim at the γ sources with less than 1° angular resolution
- in absence of a pointing system or in case of unexpected large-angle events, the crystals retain the current state-of-the-art resolution

oriented crystals might represent an important milestone in the progress of electromagnetic calorimetry

outlook

- further beamtests with <u>new crystalline samples</u>, both optically transparent (e.g. PbF₂) and metallic (e.g. Ir)
- experimental setup optimisation for the measurement of the output radiation in terms of single photons
- further tests with photon beams to <u>probe he Strong Field PP</u> features
- development of a <u>custom readout system for the scintillation and</u>
 <u>Cherenkov light</u> emitted inside the samples → <u>larger-scale detector prototype</u>...

thank you!

any comments or questions? contact me at mattia.soldani@fe.infn.it!

Coherent Bremsstrahlung/Pair Production

incidence angle $>> \Theta_o$ wrt. the axis and match between the charge-lattice momentum transfer and a reciprocal lattice vector, i.e. trajectory along an off-axis periodic string \rightarrow overbarrier coherent effect, contributing to the <u>Bremsstrahlung/PP enhancement at large angle</u> (up to 1°) + <u>monochromatic components</u>

lab. frame

e- - comoving frame

important inputs are given by simulations performed with a **modified Geant4** version — Bremsstrahlung and PP cross sections are rescaled in agreement with full Monte Carlo based on the <u>Baier-Katkov quasi-classical operator method to simulate the radiation/PP enhancement</u> in oriented crystals.

V. Guidi, L. Bandiera, V. Tikhomirov Radiation generated by single and multiple volume reflection of ultrarelativistic e* and e* in bent crystals Phys. Rev. A, 86:042903, 2012

input tracker

 \sim 2×2 cm² xy double-sided Si microstrip sensors, with 50 µm readout pitch, analog readout and an overall \sim 10 µm single-hit resolution

output charged multiplicity counter

pair of ~10×10 cm² single-sided Si microstrip sensors, with 242 μm readout pitch, analog readout and an overall ~35 μm single-hit resolution

goniometer

fine-grained, remote-controlled movements along x, y, θ_x and θ_y with ~5 µm/µrad resolution

CERN H2

input angle distributions divergences differ by a factor ~10

the setup output stage

different calorimeters have been exploited:

- CERN H4: 3x3 matrix of PWO blocks from the CMS endcap, SiPM-based readout
- CERN H2: (OPAL) Pb glass blocks read out by PMTs
- DESY T21: 3x3 matrix of BGO blocks from the PADME calorimeter, PMT-based readout

CERN H4

a photon multiplicity counter was installed and tested for the first time during the 2019 beamtest at DESY T21, to ensure better sensitivity to the samples lattice axes on a statistical basis

light-emitting crystals

- commercial samples have very small mosaicity, which is also much smaller than the SF angular range
- can be grown easily up to any size
- cheap
- slightly weaker lattice effects

metallic crystals

- very strong lattice effects
- easy machining
- limited to small-size samples → ok for radiators/photoconverters

(lead fluoride)

- transparent, Cherenkov light emitter
- high density, high Z
- $X_0 = 9.3 \text{ mm}$ (slightly higher than PbWO₄)
- suitable for the development of a fast calorimeter
- already exploited (with random orientation) by the PADME experiment at LNF and by the E989 (*g*-2) experiment at Fermilab

$BR(K_L \to \pi^0 \nu \overline{\nu})$

new physics!

measurement goal: SBR = 100%

→ <u>top-quality background rejection</u> is mandatory:

photons in the input beam charged products $K_i \rightarrow \pi^0 \pi^0$ with some photons at large angle $K_{I} \rightarrow \pi^{0}\pi^{0}$ upstream K_i → $π^0π^0$ with some LAV 22-25 MEC LAV 16-21 photons at small UV/AFC LAV 1-15 angle $A \rightarrow \pi^0 n$ Ε $\langle p_F \rangle = 40 \text{ GeV}$ photons and SAC (some) neutral hadrons in the input beam 241.5 m 80 m from target 130 m 170 m $K_i \rightarrow \pi^0 \pi^0$ with missing photons from different pions charged products