

ALICE Upgrade for LHC Run 4 and beyond

Andrea Rossi, INFN Padova on behalf of the ALICE Collaboration

ICHEP 2020 | PRAGUE ONLINE WORLD

28/07/2020

Ongoing upgrade: ALICE look in Run 3 → talk by S. M. Panebianco

ICHEP Online, 28 July - 6 August

INFN

stituto Nazionale di Fisica Nucleare

Forward electromagnetic and hadronic calorimeters

- FoCal-E: high-granularity Si-W sampling calorimeter \rightarrow direct γ , π^0
- FoCal-H: Pb-Sc sampling calorimeter for photon isolation and jets

FOCAL

Forward electromagnetic and hadronic calorimeters

- FoCal-E: high-granularity Si-W sampling calorimeter \rightarrow direct γ , π^0
- FoCal-H: Pb-Sc sampling calorimeter for photon isolation and jets

Main goal:

- Constrain gluon nuclear PDF at small Bjorken-x
- Limited information even for proton for $x < 10^{-4}$
 - \rightarrow Measure isolated γ at forward y

N.B. DIS experiments: not sensitive to gluon PDF at LO

Nonlinear QCD

recombination

BK/JMWLK gluon

0000000

Limited information on nPDF at low $x \rightarrow$ large uncertainties on theoretical predictions \rightarrow difficult to disentangle QGP-induced effects from "cold-nuclear matter" effects.

stituto Nazionale di Fisica Nucleare

FOCAL: performance for isolated γ

$$R_{\rm pPb} = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{dN_{\rm pPb}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$$

- Less than 20% relative uncertainty above 6 GeV/c
- Significantly better than theoretical uncertainties from nuclear PDF

LOI: ALICE-PUBLIC-2019-005

FOCAL: expected constraints on gluon nPDF

Nuclear/proton gluon PDF ratio

Recent nNNPDF fit to DIS measurements

- _ unconstrained for $x < 10^{-2}$
- N.b. constraints from HF measurements by ALICE and LHCb not used
- With FOCAL: significant constraints at ~ $10^{-5} < x < 10^{-2}$
- More precise than electron-ion collider (EIC) experiments for x < 10⁻³

Novel vertex detector consisting of wafer-scale, ultra-thin Monolithic Active Pixel Sensor (MAPS) in curved, perfectly (half-)cylindrical layers.

- Control logic, data buffers & links at the edge of the sensor
- Air-flow cooling

stituto Nazionale

New beam pipe (r_{out} = 1.65 cm)

LOI: CERN-LHCC-2019-018

Inner Tracking System 3

Novel vertex detector consisting of wafer-scale, ultra-thin Monolithic Active Pixel Sensor (MAPS) in curved, perfectly (half-)cylindrical layers.

- Control logic, data buffers & links at the edge of the sensor
- Air-flow cooling

New beam pipe (r_{out} = 1.65 cm)

- Improvement by ~factor 2 on DCA resolution
- Significant improvement of tracking efficiency for $p_{T} < 200 \text{ MeV/}c$

LOI: CERN-LHCC-2019-018

ITS3 performance: low-mass dielectrons

Dielectrons \rightarrow study electromagnetic radiation from QGP M_{ee} slope \rightarrow QGP temperature

ITS3:

- reduced combinatorial background from conversions
- better charm rejection

Reduction of statistical (~ factor 1.3) and systematic (~ factor 2) uncertainties on QGP temperature

TS3 performance: beauty-quark hadronisation

stituto Nazional li Fisica Nuclear

Run 5: ALICE "next-generation" possibilities

- "Ambition to design a new experiment to continue with a rich heavy-ion programme at the HL-LHC" mentioned in the <u>Update of the European strategy for particle physics</u>
- Goal: studies of pp, pA, and AA collisions at luminosities x20-x50 higher than in ALICE in Run 3-4.
- **2019: first document** outlining possible concept and physics opportunities <u>https://arxiv.org/abs/1902.01211</u>
- Compact, all-silicon "nearly massless" detector with $\frac{|}{|}$ excellent low- p_{T} tracking capabilities
 - Truly-cylindrical layers with curved wafer-scale ultra-thin MAPS + endcaps (|η|<4 coverage)
 - Innermost layers possibly inside beam pipe
 - Outer layers: **PID via time-of-flight** with 20 ps resolution

FN Istitute Nucleare Run 5: ALICE "next-generation" possibilities

- "Ambition to design a new experiment to continue with a rich heavy-ion programme at the HL-LHC" mentioned in the <u>Update of the European strategy for particle physics</u>
- Goal: studies of pp, pA, and AA collisions at luminosities x20-x50 higher than in ALICE in Run 3-4.
- **2019: first document** outlining possible concept and physics opportunities <u>https://arxiv.org/abs/1902.01211</u>
- Compact, all-silicon "nearly massless" detector with a_{rior}
 - Truly-cylindrical layers with curved wafer-scale ultra-thin MAPS + endcaps (|η|<4 coverage)
 - Innermost layers possibly inside beam pipe
 - Outer layers: **PID via time-of-flight** with 20 ps resolution
- \rightarrow Access doubly and triply heavy-quark hadrons
- \rightarrow Precise dielectron measurements
- ightarrow soft and ultra-soft photons

LS2 (now): Upgrade of ALICE on track \rightarrow talk by S. M. Panebianco

LS3 (2025): new upgrades for LHC run 4

- FOCAL: γ , π^0 , jets in the forward region to constrain gluon nPDF at low Bjorken-x
- ITS3: truly cylindrical silicon layers made of ultra-thin wafer-size MAPS
 - \circ low-mass dielectrons (\rightarrow QGP temperature)
 - improve HF-particle performance + search for exotic charm nuclei

Beyond 2030: continue heavy-ion programme in HL-LHC era

Possibility of a "nearly-massless" silicon detector

- multi-HF particles
- low-mass dielectrons and soft photons

Unprecedented insight into QGP world expected ahead of us!

EXTRA

ΙΝΓΝ

Istituto Nazionale di Fisica Nucleare

Bjorken-x range coverage

$$Q_{s}^{2} \sim (xA)^{\frac{1}{3}}$$

ΙΝΓΝ

Istituto Nazionale di Fisica Nucleare

ITS3 details

		Beampipe inner/outer radius (mm)		16.0/16.5		
New Beampipe: $r \approx 16$ mm, $\Delta R = 0.5$ mm			IB Layer parameters	Layer 0	Layer 1	Layer 2
			Radial position (mm)	18.0	24.0	30.0
LO: $r \approx 18 \text{mm}$, L1: $r \approx 24 \text{mm}$, L2: $r \approx 30 \text{ mm}$			Length (sensitive area) (mm)	270	270	270
्य य		>	Pseudo-rapidity coverage ^a	±2.5	±2.3	±2.0
			Active area (cm ²)	305	408	508
~280 mm			Pixel sensors dimensions (mm ²)	280×56.5	280×75.5	280 imes 94
			Number of pixel sensors / layer		2	
			Pixel size (µm ²)		$O(15 \times 15)^b$	
The second secon			^a The pseudorapidity coverage of the detect	or layers refers t	o tracks originat	ing from a
			collision at the nominal interaction point (b For the following colution the nivel size is	z=0).	$a \log \left(O(20) \right)$	$20)$ um^{2}
Beampipe IR 16 mm ΔR 0.5mm Beam pipe thickness: 500μm (0.14% X ₀) Sensor thickness: 20 – 40μm (0.03 - 0.05% X ₀)	Peripheral circuit (ctrl logic, data buffers & links)		e Pixel Matrix			15 mm
			280 mm			

B,

Study beauty-quark hadronisation mechanism \rightarrow B⁰ production enhancement from hadronisation of beauty quarks via recombination + enhanced strange-quark production in the QGP c 3.5 ALICE Upgrade Projection 0–10% Pb–Pb, $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ $3.0 LL_{int} = 10 \text{ nb}^{-1}$ $B_s^0 \rightarrow D_s^- \pi^+$ □ ITS2 2.5 ITS3 TAMU 2.0 $-B_{0}^{0}$ ---- B (non-strange) 1.5 1.0 0.5 12 18 20 10 16 14 p_{τ} (GeV/c) R_{AA} TAMU: PLB 735, Ncoll 445-450 (2014) ICHEP Online, 28 July - 6 August

Improvement by a factor ~2 on statistical precision with ITS3 **Extend** p_{τ} -reach down to 2 GeV/c with~ 25% statistical uncertainty Expected systematic uncertainty ~10%

 \rightarrow Access to B_s⁰ at low p_{T} , the most sensitive region for coalescence Better than CMS expectations reported in Yellow Report: improved p_{τ} reach, centrality differential measurement

Study beauty-quark hadronisation mechanism

 \rightarrow B⁰ production enhancement from hadronisation of beauty quarks via

recombination + enhanced strange-quark production in the QGP

Possibility to distinguish prompt and non-prompt D_s^+ azimuthal anisotropy $(v_2) \rightarrow$ constraints to beauty-quark thermalisation and diffusion coefficient

Study beauty-quark hadronisation mechanism

stituto Nazionale

 \rightarrow B⁰_s production enhancement from hadronisation of beauty quarks via recombination + enhanced strange-quark production in the QGP

Improvement by a factor ~2 on statistical precision with ITS3 **Extend** p_{T} **-reach down to 2 GeV/c** with~ 25% statistical uncertainty Expected systematic uncertainty ~10%

 \rightarrow Access to B⁰_s at low p_{T} , the most sensitive region for coalescence

