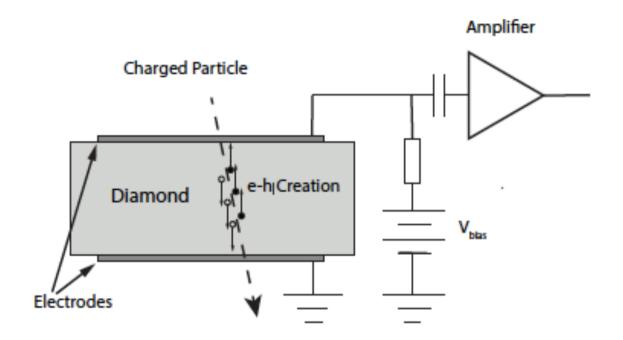


Latest Results on Radiation Tolerance of CVD Diamond Sensors

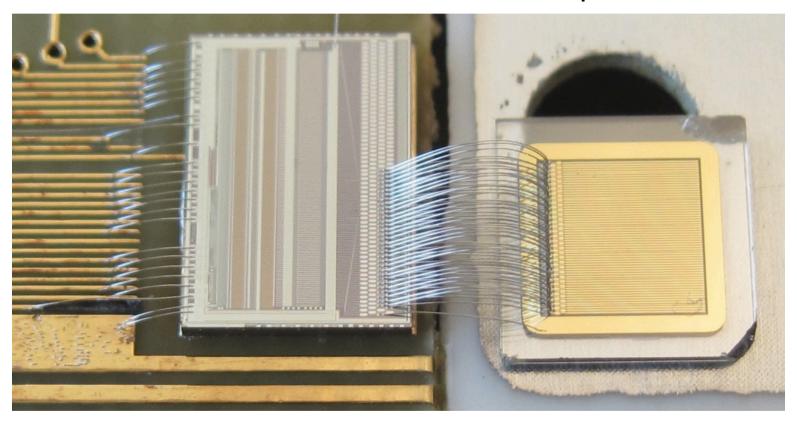
William Trischuk
University of Toronto
on behalf of the RD42 Collaboration
ICHEP2020: July 29, 2020

The 2020 RD42 Collaboration

A. Alexopoulos³, M. Artuso²⁰, F. Bachmair²⁴, L. Bäni²⁴ M. Bartosik³, H. Beck²³, V. Bellini², V. Belyaev¹², B. Bentele¹⁹, P. Bergonzo³¹, A. Bes²⁷, J-M. Brom⁷, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷, J. Collot²⁷, J. Cumalat¹⁹, S. Curtoni²⁷, A. Dabrowski³, R. D'Alessandro⁴, D. Dauvergne²⁷, W. de Boer¹⁰, C. Dorfer²⁴, M. Dunser³ G. Eigen³⁰, V. Eremin⁶, J. Forneris¹⁵, L. Gallin-Martel²⁷ M-L. Gallin-Martel²⁷, K.K. Gan¹³, M. Gastal³, A. Ghimouz²⁷, M. Goffe⁷, J. Goldstein¹⁷, A. Golubev⁸, A. Gorišek⁹ E. Grigoriev⁸, J. Grosse-Knetter²³, A. Grummer²¹, B. Hiti⁹, D. Hits²⁴, M. Hoeferkamp²¹, T. Hofmann³, J. Hosselet⁷, F. Hügging¹, C. Hutton¹⁷, R. Jackman³¹, J. Janssen¹, R. Jennings-Moors³¹, H. Kagan^{13,}, K. Kanxheri²⁸, R. Kass¹³ M. Kis⁵, G. Kramberger⁹, S. Kuleshov⁸, A. Lacoste²⁷ S. Lagomarsino⁴, A. Lo Giudice¹⁵, I. Lopez Paz²², E. Lukosi²⁵, C. Maazouzi⁷, I. Mandić⁹, S. Marcatili²⁷, A. Marino¹⁹ C. Mathieu⁷, M. Menichelli²⁸, M. Mikuž⁹, A. Morozzi²⁸. F. Moscatelli²⁸, J. Moss²⁹, R. Mountain²⁰, A. Oh²², P. Olivero¹⁵, A. Pakpour-Tabrizi³¹, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, F. Picollo¹⁵, M. Pomorski¹¹ A. Porter²², R. Potenza², A. Quadt²³, F. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, O. Rossetto²⁷, D.A. Sanz Becerra²⁴, C. Schmidt⁵, S. Schnetzer¹⁴, S. Sciortino⁴, A. Scorzoni²⁸, S. Seidel²¹, L. Servoli²⁸, S. Smith¹³, B. Sopko¹⁸, V. Sopko¹⁸, S. Spagnolo²⁶, S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugu³⁰, C. Sutera², M. Traeger⁵, W. Trischuk^{16,♦}, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷ S. Wagner¹⁹, R. Wallny²⁴, J.C. Wang²⁰, J. Welch³¹, N. Wermes¹, J. Wickramasinghe²¹, M. Yamouni²⁷, J. Zalieckas³⁰, M. Zavrtanik⁹


118 Participants

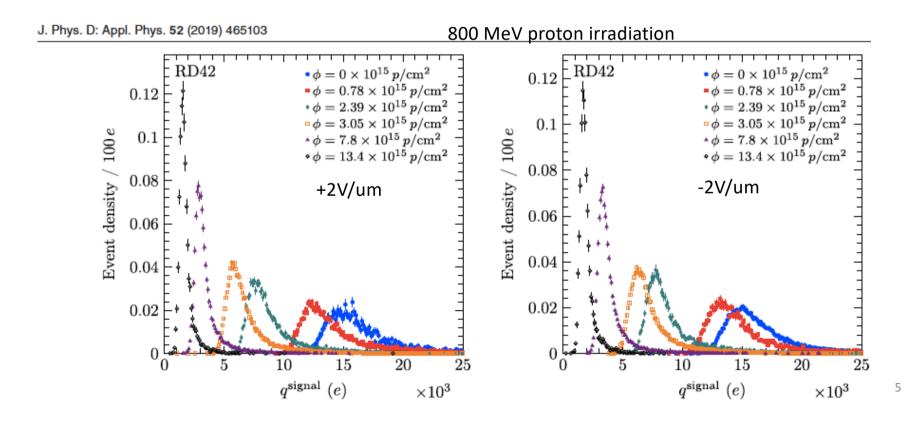
¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany ⁶ Ioffe Institute, St. Petersburg, Russia ⁷ IPHC, Strasbourg, France 8 ITEP. Moscow, Russia ⁹ Jožef Stefan Institute, Ljubljana, Slovenia ¹⁰ Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France ¹² MEPHI Institute, Moscow, Russia ¹³ The Ohio State University, Columbus, OH, USA ¹⁴ Rutgers University, Piscataway, NJ, USA ¹⁵ University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical Univ., Prague, Czech Republic ¹⁹ University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA ²² University of Manchester, Manchester, UK ²³ Universität Goettingen, Goettingen, Germany ²⁴ ETH Zürich, Zürich, Switzerland ²⁵ University of Tennessee, Knoxville, TN, USA ²⁶ INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, France ²⁸ INFN-Perugia, Perugia, Italy ²⁹ California State University - Sacramento, USA ³⁰ University of Bergen, Bergen, Norway 31 University College London, London, UK


31 Institutes

2

Diamond as a MIP sensor

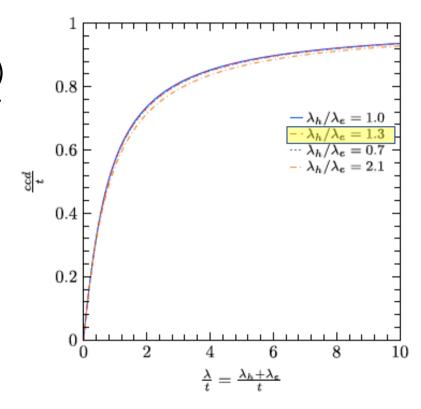
Diamond Tracker under test at SpS testbeam



128 channel VA2 readout chip

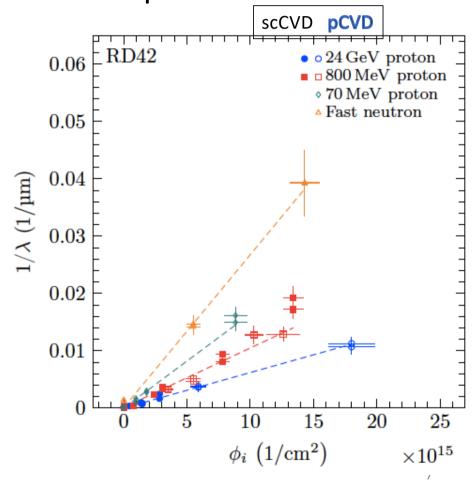
5 x 5 mm² scCVD diamond tracker

Pulse Height in Irradiated scCVD sensors


Sum of charge observed on 5 contiguous strips near the impact point of the testbeam track

Mean Free Path in diamond vs Signal Size

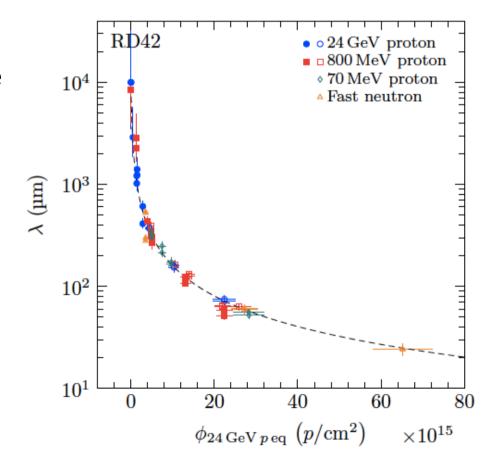
- Collect all the charge only when $\lambda \rightarrow \infty$
- For low-quality material $\lambda \sim ccd$ (linear part of exp.)
- Mean free path for electrons and holes could differ
 - Carrier lifetime only 30% different in diamond
 - Consider wide range of possibilities
 - Doesn't change translation from ccd to λ


$$\frac{ccd}{t} = \sum_{i=e,h} \frac{\lambda_i}{t} \left[1 - \frac{\lambda_i}{t} \left(1 - e^{-\frac{t}{\lambda_i}} \right) \right]$$

Mean Free Path vs. Irradiation species

- Irradiation introduces traps in the material
- Lowers carrier mean free path
- Effect depends on
 - Traps in unirradiated material: λ_0
 - Proportional to fluence: φ
 - Irradiation species (protons, neutrons,...): k_i

$$\frac{1}{\lambda} = \frac{1}{\lambda_0} + k\phi$$

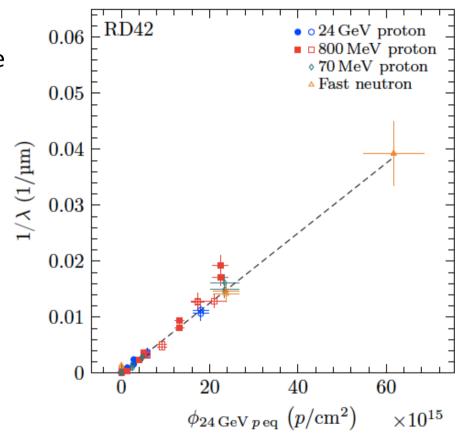


Adjust each species for relative damage

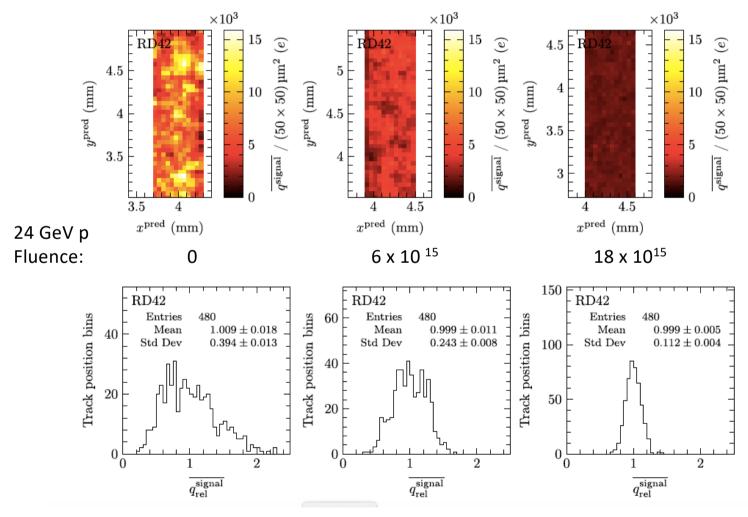
- Normalise damage to 24 GeV proton fluence
- Correct for λ_0 for each sample
- Universal signal degradation curve

4	۰	١	
١		,	

Irradiation Species	k _i	
Fast neutrons	4.31 ± 0.34	
70 MeV protons	2.65 ± 0.25	
800 MeV protons	1.67 ± 0.09	
24 GeV protons	1	



Adjust each species for relative damage


- Normalise damage to 24 GeV proton fluence
- Correct for λ_0 for each sample

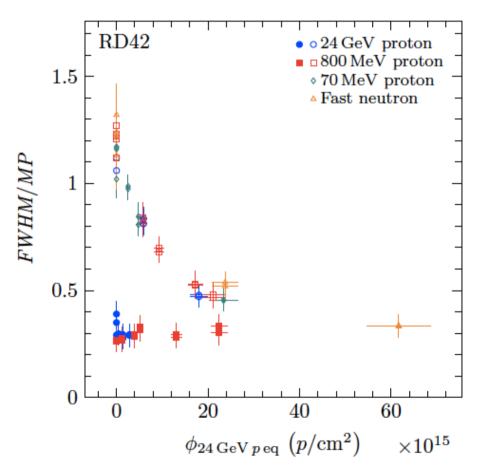
• Alternatively, get universal curve in $1/\lambda$

Irradiation Species	k _i
Fast neutrons	4.31 ± 0.34
70 MeV protons	2.65 ± 0.25
800 MeV protons	1.67 ± 0.09
24 GeV protons	1

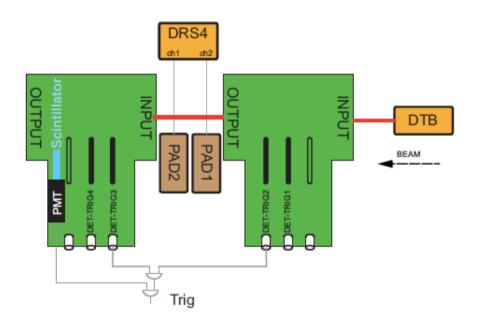
Signal Uniformity in Irradiated pCVD material

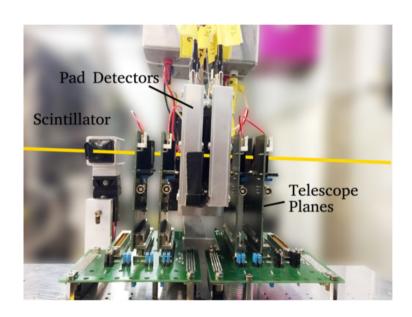
• Re-writing λ , ϕ relation:

$$\lambda = \frac{\lambda_0}{1 + \lambda_0 k \phi}$$

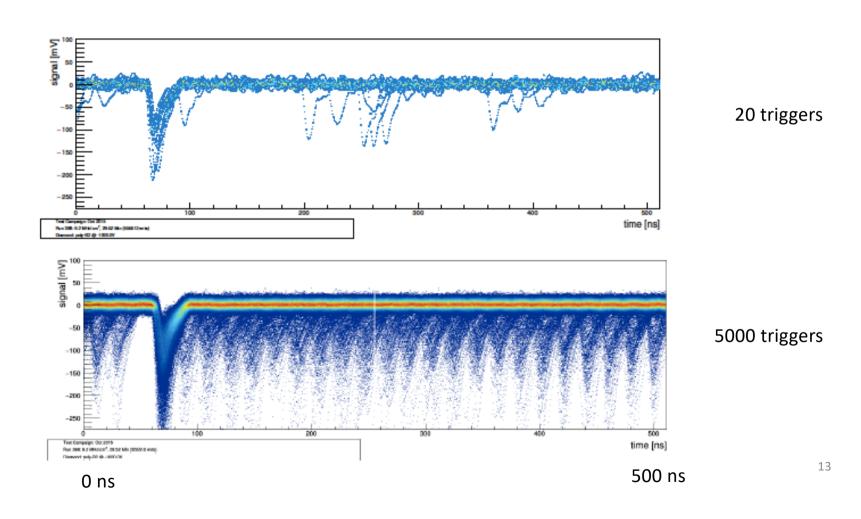

Differentiating:

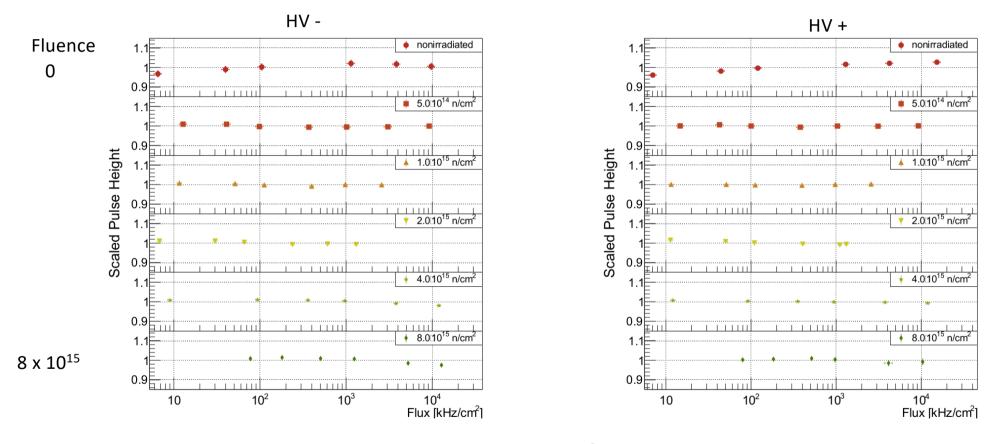
$$\frac{\mathrm{d}\lambda}{\mathrm{d}\phi} = -k\lambda^2.$$


- Highest signal regions
- Suffer largest degradation
- FWHM narrows


MIP Charge Resolution vs. Fluence

- Large FWHM of signal results from large spatial variation of signal
- Spatial variation damped out by irradiation
 - scCVD samples essentially unchanged
 - pCVD samples have improved energy/charge resolution


High Rate PSI Testbeam Setup



- Reference planes use CMS Pixel detectors:
 - PSI dominated by multiple scattering -- track position ~20-30 um
- Diamond pads (4-8 mm on side) readout with DRS4 flash ADC (2 GS/s)

Raw Data from 10 MHz/cm² Flux

Rate independence: neutron irradiated pCVD

Flat to better than 2% up to 10-20 MHz/cm². Exploring systematics of O(1%)

Summary

- Diamond sensors have a long history of applications in HEP
- Diamond sensors now give robust MIP signals even after 8 years of LHC operation
- Signals remain viable to fluences of 10¹⁶ /cm²
- MIP signals stable to particle fluxes of 10-20 MHz/cm²
- 3D devices now being studied (previous talk: Kagan)
- New beam conditions monitors being developed for HL-LHC (yesterday: Mikuz)

Backup

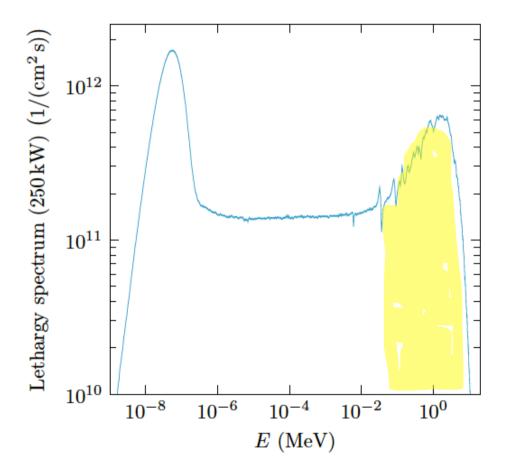


Figure 1: Lethargy neutron spectrum of channel F19 in core 189 of the TRIGA reactor, at full reactor power (250 kW) [7].