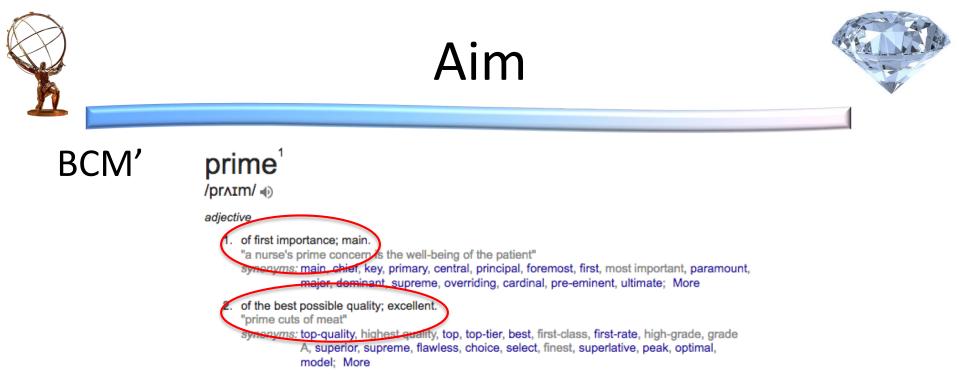
ICHEP 2020 | PRAGUE


40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS VIRTUAL Conference

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

System for Abort and Luminosity of the ATLAS Experiment at the HL-LHC based on pCVD diamond

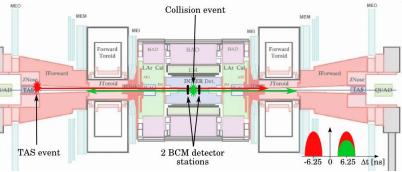
Marko Mikuž

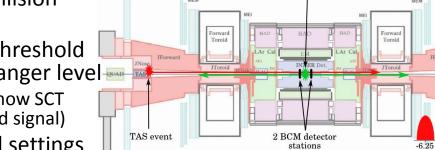
University of Ljubljana & Jožef Stefan Institute for the ATLAS BCM D42 Collaboration ICHEP 2020 Virtual Prague, July 28, 2020

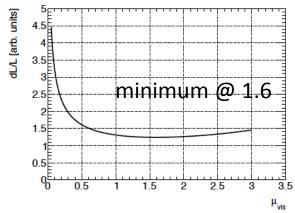
The ultimate ATLAS Beam Conditions Monitor Shall provide

- Fast (bunch-by-bunch) safety system for ATLAS
- Luminosity measurement
- Background monitoring

in the ATLAS ITK volume for the HL-LHC era

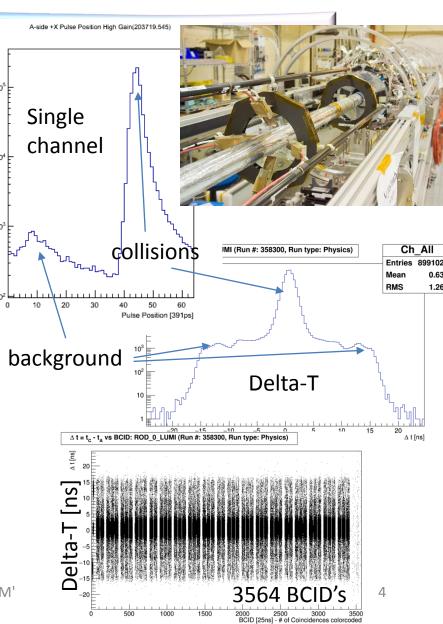



Functionality


BCM TOF concept

- Collisions: in-time
- **Background: out-of-time**

- Beam protection Abort
 - out-of-time signals (~6 ns before collision) are a clear messenger of upstream non-collision background (NCB)
 - abort on out-of-time activity above threshold signifying beam background at ITk danger level 🔤 🔤
 - danger thresholds can be pretty high (now SCT 25k/cm²/BC i.e. 4000x the lumi induced signal)
 - need to **keep flexibility** for threshold settings
 - include machine-style (slow, 40 µs integrating) Beam Loss Monitor (BLM)
- Luminosity measurement and NCB Lumi
 - main algo: (absence of) *in-time* (~6ns *after* collision) signals (r - zero counting) -> single MIP sensitivity
 - max. statistical sensitivity $r \approx 0.2 \rightarrow 1.6$ hits/cell, shallow minimum
 - need robust device, signal stability paramount
 - have to cover μ -range from VdM (0.01 in tails) to μ =200 (ultimate HL-LHC lumi)



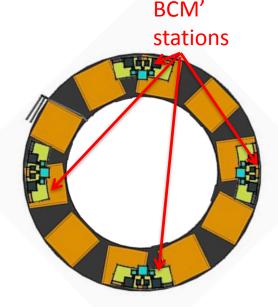
Current ATLAS BCM Highlights

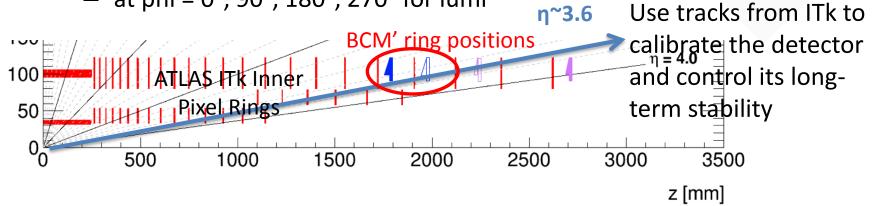
- Fast pCVD based system with asynchronous 2.56 GB/s read-out
 - 4 sensors/side, 1.9 m from IP
 - 500 ps time resolution
 - Installed into ATLAS Pixel support tube in 2007
- Performance
 - PM diagnostics
 - Post-mortem buffer after each dump triggered by machine BLM's
 - A couple of aborts at danger level
 - Mostly UFO-induced
 - Beam background diagnostics
 - Timing with 500 ps resolution cleanly resolves collisions from background for each BCID
 - Luminosity measurement
 - Preferred ATLAS lumi-meter in Run1
 - Stability problems in Run2 conditions
 - Low (initial) S/N (<10), no diagnostics

See JINST 3 P02004 (2008) for design details

M. Mikuž: BCM'

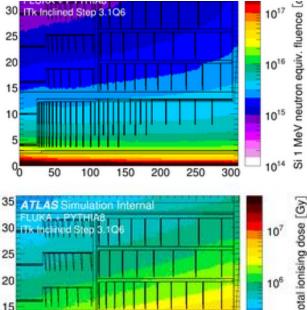
System Design

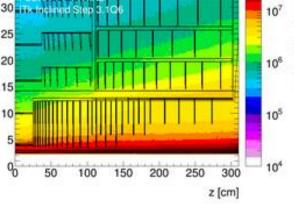

- BCM suffers from *abort <-> lumi* incompatibility
 - e.g. *abort* thresholds cannot be set higher without abandoning *lumi*
 - fast timing needed for *abort* lowers SNR thus limiting *lumi* stability
- Separate out functionalities for HL-LHC
- Two fast devices from sensor to off-detector
 still keep commonality wherever possible
- For installation, group the *abort*, *lumi* BCM' and BLM into a *station*



Location

- Stay within (removable) inner pixel part
- Keep close to sweet spot at z~1875 mm
- Turns out to be z~2000 (or 1800) mm in inner ITk layout
- Move out to r^{100} mm $\eta^{3.6}$
- Occupy a separate R1 ring
- 4 *stations* per side
 - with abort, lumi BCM' and BLM
 - at phi = 0°, 90°, 180°, 270° for lumi

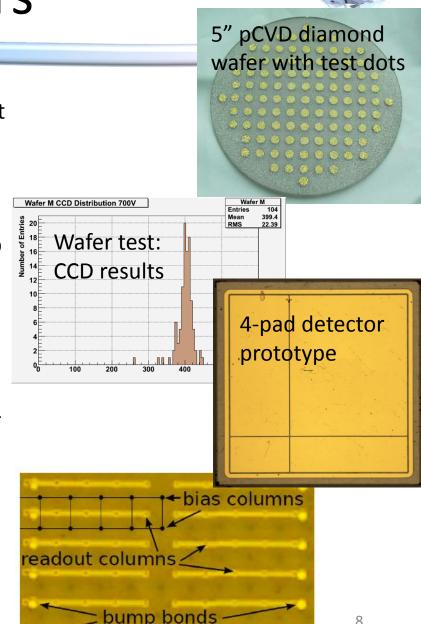

Environment



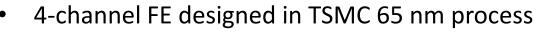
Fluence and dose values for BCM'. Values of 1 MeV fluences and dose are normalised to 2000 fb⁻¹. All other values are per event. No safety factors have been applied to these values.

	integrated luminosity (fb ⁻¹)	location	R (cm)	Z (cm)	1 MeV neq (10 ¹⁶ cm ⁻²)	total ionising dose (MGy)	charged particle fluence (10 ⁻³ cm ⁻² pp ⁻¹)	hadrons > 20 MeV fluence (10 ⁻³ cm ⁻¹ pp ⁻¹)				
	2000	BCM'	9.0	179.5	22.5	1.99	36.3	19.2				
		BCM'	10.0	179.5	19.9	1.78	31.8	16.1				
		BCM'	11.0	179.5	18.5	1.60	29.1	14.2				
		BCM'	12.0	179.5	17.8	1.58	28.6	12.8				

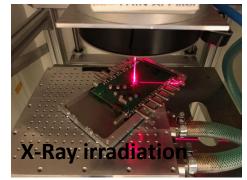
- ATLAS radiation simulation, *r*=9-12 cm, *z*=1.8 m
- NIEL&TID for 2/ab, no safety factors
 - NIEL ~2x10¹⁵ n_{eq}/cm²
 - TID $\lesssim 200$ Mrad
 - low neutron fraction
 - 3x10¹⁵ 800 MeV p/cm² for sensor benchmark (1.5 ITk safety factor – see W.Trischuk in Session II)
- Charged particle flux/BX @10 cm
 - $~0.032/\text{cm}^2 \text{ x } \mu \text{ (50\% e}^+\text{e}^-\text{)}$
 - ~4.5(6.4)/cm² for μ = 140(200)
- Flux ~160(230) MHz/cm²
 - Booked CERN HiRadMat facility to test high rate response for *lumi* and *abort*

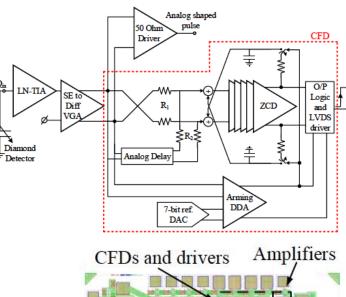

r [cm]

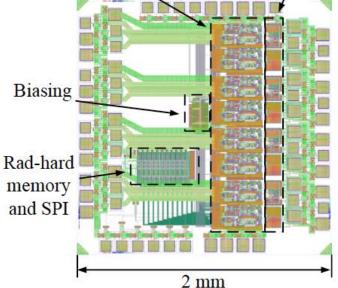
Sensors


- pCVD diamond chosen as sensor material
 - robustness (no cooling), low C, negligible I, fast signal, radiation hard
- 3 types of sensors
 - 1x1 cm² (*lumi*), 5x5 mm² (*abort*), ~1x1 mm² (3D lumi) (see H.Kagan in Session II)
 - 3&4 pads (*lumi*), 4 pads (*abort*), single pad (3D *lumi*), max size ~50 mm², min size ~1 mm²
 - aim for C<5pF, not trivial for 3D (TCAD), see H.Kagan in Session II
- Working with RD42 to secure best possible pCVD diamond sensor quality
- Focus on US vendor having worked with RD42 for the last few years
 - 1-2 wafers to be grown for the project
 - sensors on loan for prototypes
- Evaluation of charge collection (~9ke @2 $V/\mu m$) and long-term current stability


3D pCVD diamond

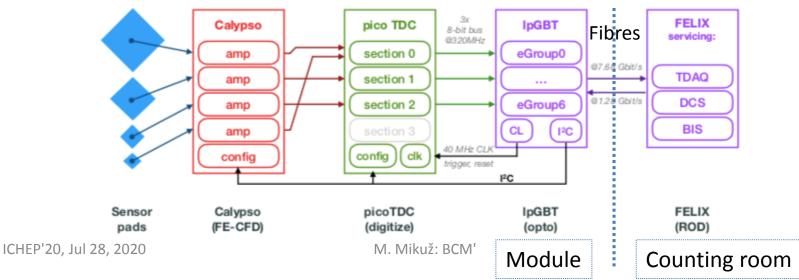

Front-End - Calypso


- minimal reticle size 2x2 mm²
- affordable MPW through Europractice
- 2 inputs/channel: *lumi/abort*
 - optimized for 2-5 pF detector capacitance
 - <1.5 ns peak, <15 ns settling time @2pF</p>
 - <100 ps time jitter @2pF for >3.6 ke signals
 - *lumi*: (110 + 55/pF)e noise , ±50ke dynamic range
 - abort: 830 ke noise @2pF, ± 750 Me dynamic range
- 2nd iteration Calypso_B meets all specifications
 - including preliminary TID radiation testing
- 3rd iteration Calypso_C to be submitted August 26th



ICHEP'20, Jul 28, 2020

M. Mikuž: BCM


Read-Out Chain

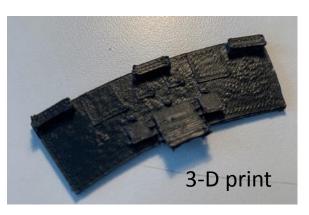
10

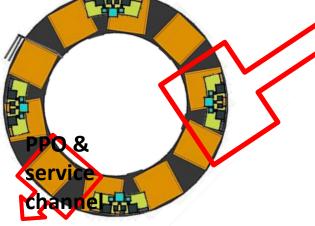
- Baseline: complete chain on the ring
- FE->picoTDC->lpGBT->VTRx+
 - Barely matches the radiation spec
 - Adds power on ring, on-module bPOL2V5's for chips
 - + Complete readout with optical fibre in/out

- Proceeding with sequentially adding R/O chain components
 - PicoTDC done
 - IpGBT to follow
 - Radiation tests of all ASICS at CERN X-ray
 - Progressive TID
 - Calypso_B 30, 70, 240 Mrad done, preliminary check ok

Station

picoTDC


FF


/TRX+

lpGB'

sensor

- Many chips now on the station
 - 3 sensors, 3 FE, 2 picoTDC, lpGBT, VTRx+
 - bPOL's... and the BLM sensor
 - Occupies ~1/3 of available space on ring
 - MOPS on PPO on ring at service channel phi
 - Thermal load ~30 W / ring
 - Need thermal sink => cooling pipe in carbon foam of the ring

- PDR to FDR schedule (~covers 2020 + COVID delay ?)
 - Build prototype modules (~4 of each)
 - BCM' abort
 - BCM' lumi
 - BLM
 - Includes sensor/IC's (proto ?)/flex
 - Design and prototype integration of 3 module types (BCM' abort, BCM' lumi, BLM) into a station as the object to install
 - Prototype services and data-links as realistic as feasible
 - Test beam of system, including irradiated modules (1-2 of each)
- Schedule contingent on Covid-19 development
 - Many developments scheduled at CERN and other labs (SLAC, PSI, DESY)

Work Division

- Up to module production workload divided between Ohio State and Ljubljana
 - Manchester help on sensor design
 - Wiener Neustadt starting on powering scheme
- Integration on LS, services, links etc. rely heavily on help of respective ATLAS Pixel/ITk
 – CERN help on integration & commissioning
- (Sub-)critical, new collaborators welcome !

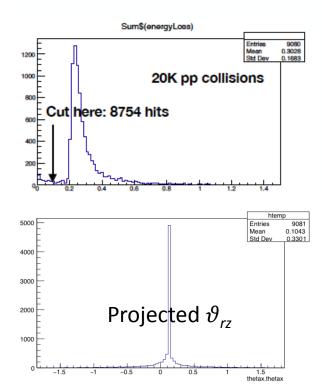
sk Name	; Jul	201		201 Jan		201	18 1 Jul	2019		2020	-)21 an J		022		2023		2024 Jan Jul	2025	4	
2.4.4 Luminosity and Beam Protection	Jui	Jan	Jui	Jan	Jui	Jan	Jui	Jan	Jui	Jan	Jui	19	in j		an	Jui	Jan .		Jan Jui	Jan J		
Internal Specifications review						•									_							
FE & Proto-digital design review, submit						1										RC	\ / ' i	c iı	ntegra	hata	n IS	
TB: sensor/FE & proto-digital									-										-	ateu	1115	
SPR: Sensors										•						scr	edu	lle	:			
Preparation for PDR: Sensors									[lt is	s an	ac	ditio	nal ri	ng on	th
PDR: Sensors										56											ed in L	
SPR: Modules (ASIC)										54						•						5
Preparation for PDR: Modules										Ť	1					(SL	AC)	ar	nd ser	t to (CERN.	
PDR: Modules, submit proto-IC + services specs										5	-											
Design and build proto-module board: Calypso + picoTDC											μ.											
Test of proto-module											Ľ	h										
Irradiate proto-module (*)												Ľ.										
Testbeam of proto-module (*)												ľ										
FDR, submit pre-production IC												>4	1									
Fabricate pre-series sensors, IC's													Ľ.									
Assemble module boards (2 sets for pre-production, 2 for radiation QC)													Ľ	1		1						
Irradiations of system														Ľ.			BC	'N	1' Re	ady	for	
Test-beam / lab tests of system																						
PRR														4		l		In	stall	atio	n	
Submit production IC															i,							
QA of production		n	20	20):											h						
Production system built		lan	۰۶	nc	or (SDE	2									٩						
All systems built Final station QA/QC, mechanics, back-end BCM' Ready for Installation - I Pixel IS EC A Quadrant 4		Jan: Sensor SPR												-5								
		April: Sensor PDR + ASICs SPR July: ASICs PDR + Services SPR																				
BCM' Ready for Installation - I Pixel IS EC A Quadrant 4)	•					
BCM' Ready for Installation - II Pixel IS EC C Quadrant 4 PUSH IN FROM																	•					
BCM' Ready for Installation - II Pixel IS EC C Quadrant 4 PUSH IN FROM																Ļ	•					

Summary

- BCM' fast protection and lumi measurement device inside ATLAS ITk inner pixel end-cap

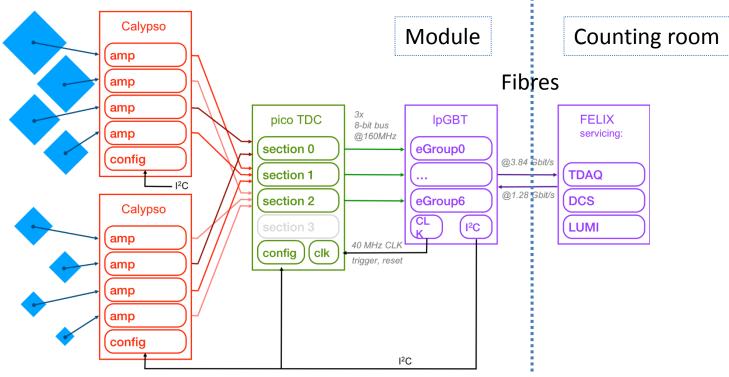
 Includes machine-style (slow, integrating) BLM
- Many milestones, including formal reviews, passed, many more to come
- Schedule requires BCM' ready for installation in 2023 – tight, but achievable





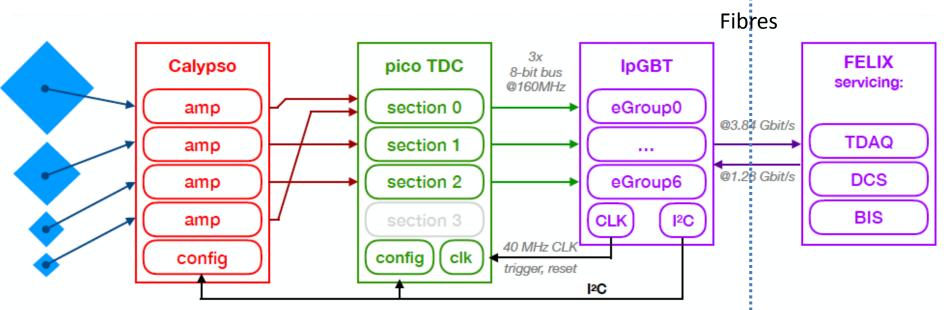
ATHENA Simulation

- $z = 179 \text{ cm}, r = 9.0 \text{ cm}, 1 \text{x} 1 \text{ cm}^2$
- Inclined at 10° for erratic current suppression
- ~ perpendicular impact of primaries
 - Minimal charge sharing
 - Tails due to secondaries
- 20k min bias 14 TeV pp collisions
 - 8754 hits in 16 sensors
 - 27.3x10⁻³ cm⁻²/pp
 - 1/cos(θ) weighting yields
 35.5x10⁻³ cm⁻²/pp, in full accordance with FLUKA flux estimate



R/O Schematic - Lumi

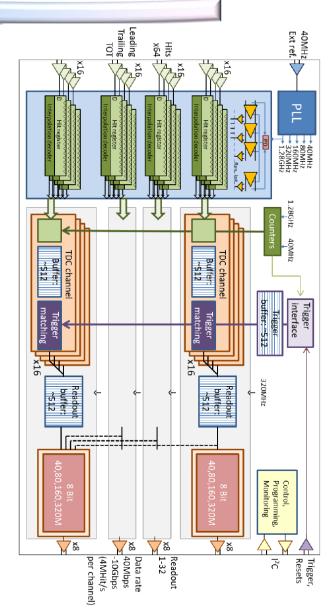
- 8 sensor channels to 1 picoTDC->lpGBT
- Successively switch larger pads off if R/O saturated



R/O Schematic - Abort

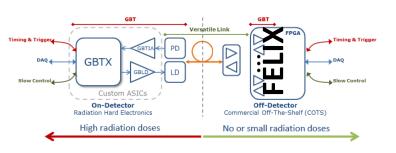
Counting room

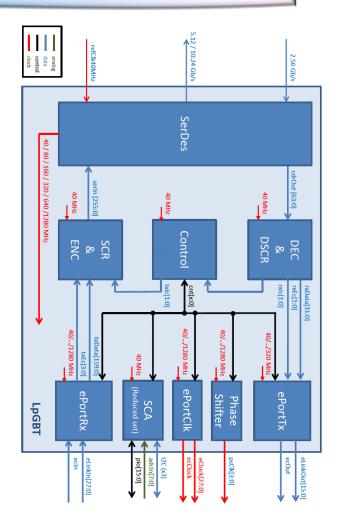
- picoTDC buffer deep enough to sustain data flow from 4 pads up to abort condition
- 4 pads considered sufficient
- Might need pre-processor to service BIS
 Module



picoTDC

- Timing chip in 65 nm by CERN-ESE
- Use 1 picoTDC per 4/8 FE channels
 - Generates 32 bits info per FE hit
- 3 out of 4 ports can be interfaced to lpGBT
 - User BW for 5G output: 24x160 =
 3.84 G
 - 120 Mhits/s, pre-select pads to be read out in case of buffer overflow





lpGBT/VTRx

- Use 24 inputs at 160 M
 - 3.84 G user data in 5.12 G up-link
- Down-link at 2.56 G should provide clean clock to preserve timing
- Fall-forward: 10 G up-link

