



# Flavour Physics at the High Luminosity LHC: LHCb Upgrade II

Ulrik Egede, Monash University on behalf of the LHCb collaboration

**ICHEP 2020** 

30 July 2020



### What is LHCb Upgrade II?

- Currently Upgrade I is under installation
- Upgrade II will come online in 2032
- 30 times current integrated luminosity





## What is LHCb Upgrade II?

- Upgrade II will involve changes to nearly all parts of experiment
  - Vertexing
  - Hadron PID
  - Tracking
  - Calorimeter
  - Muon system





#### LHCb Letter of Intent

| 12 | Phy  | sics Performance                                       | 96  |
|----|------|--------------------------------------------------------|-----|
|    | 12.1 | LHC-B simulation programme                             | 96  |
|    | 12.2 | Reconstruction of final states                         | 97  |
|    |      | 12.2.1 The B <sup>0</sup> ( $\pi^+\pi^-$ ) final state | 97  |
|    |      | 12.2.2 The $B^0(J/\psi K_S)$ final state               | 101 |
|    |      | 12.2.3 The $B_s(J/\psi\phi)$ and                       |     |
|    |      | $B_d(J/\psi K^{*0})$ final states                      | 103 |
|    |      | 12.2.4 The $B_s(D_s\pi)$ and $B_s(D_sK)$ fi-           |     |
|    |      | nal state                                              | 104 |
|    |      | 12.2.5 The $B^0(\overline{D}^0K^{*0})$ Final State     | 106 |
|    | 12.3 | Flavour Tagging                                        | 107 |
|    | 12.4 | Control Channels and Systematics                       | 109 |
|    | 12.5 | The $B_s$ - $\overline{B}_s$ Oscillations              | 110 |
|    |      | 12.5.1 Introduction                                    | 110 |
|    |      | 12.5.2 Determination of $x_s$ , $\tau_s$ and $y_s$     | 110 |
|    | 12.6 | CP Sensitivities                                       | 111 |
|    |      | 12.6.1 The angle $\alpha$                              | 111 |
|    |      | 12.6.2 The angle $\beta$                               | 112 |
|    |      | 12.6.3 The angle $\gamma$ Method-1                     | 112 |
|    |      | 12.6.4 The angle $\gamma$ Method-2                     | 113 |
|    |      | 12.6.5 CP violation in $B_s \to J/\psi \phi$           | 114 |
|    | 12.7 | $B_s \to \mu^+\mu^-$                                   | 115 |
|    |      | 12.7.1 Reconstruction Simulation                       | 116 |
|    |      |                                                        |     |

- Was written in 1995
- Observation of *CP* violation in *B* mesons and B<sup>0</sup><sub>s</sub> oscillations the main selling points
- *CP* angle  $\gamma$  would mainly be from time dependent analysis of  $B^0_s \rightarrow D^+_s K^-$
- Charm physics only from  $B \rightarrow Dlv$  decays
- B<sup>0</sup><sub>s</sub>→µ<sup>+</sup>µ<sup>-</sup> only rare decay
- Λ<sub>b</sub> never mentioned



#### LHCb Letter of Intent

| 12 | Phy  | sics Performance                                       | 96  |
|----|------|--------------------------------------------------------|-----|
|    | 12.1 | LHC-B simulation programme                             | 96  |
|    |      | Reconstruction of final states                         | 97  |
|    |      | 12.2.1 The B <sup>0</sup> ( $\pi^+\pi^-$ ) final state | 97  |
|    |      | 12.2.2 The $B^0(J/\psi K_S)$ final state               | 101 |
|    |      | 12.2.3 The $B_s(J/\psi\phi)$ and                       | 700 |
|    |      | $B_d(J/\psi K^{*0})$ final states                      | 103 |
|    |      | 12.2.4 The $B_s(D_s\pi)$ and $B_s(D_sK)$ fi-           |     |
|    |      | nal state                                              | 104 |
|    |      | nal state                                              | 106 |
|    | 12.3 | Flavour Tagging                                        | 107 |
|    | 12.4 | Control Channels and Systematics                       | 109 |
|    | 12.5 | The $B_s$ - $\overline{B}_s$ Oscillations              | 110 |
|    |      | 12.5.1 Introduction                                    | 110 |
|    |      | 12.5.2 Determination of $x_s$ , $\tau_s$ and $y_s$     | 110 |
|    | 12.6 | CP Sensitivities                                       | 111 |
|    |      | 12.6.1 The angle $\alpha$                              | 111 |
|    |      | 12.6.2 The angle $\beta$                               | 112 |
|    |      | 12.6.3 The angle $\gamma$ Method-1                     | 112 |
|    |      | 12.6.4 The angle $\gamma$ Method-2                     | 113 |
|    |      | 12.6.5 CP violation in $B_s \to J/\psi \phi$           | 114 |
|    | 12.7 | $B_s \to \mu^+\mu^-$                                   | 115 |
|    |      | 12.7.1 Reconstruction Simulation                       | 116 |
|    |      |                                                        |     |

- Was written in 1995
- Observation of CP violeties tartup mesons and  $B^0$  oscillations the period selling points
- *CP* angle  $\gamma$  would  $m_s^{+} = thod$  from time dependent and here = thod here = thod
- Charm physics only from prompt production  $B^0 \rightarrow U^+U^-$  only  $F^-$
- $B_s^0 \rightarrow \mu^+ \mu^-$  only raced acay  $\Lambda_b$  ne vastly expanded acay



# What does this mean for Upgrade II

- What we think is the main physics right now might not be what we use the detector for
- Discussing physics is good as a method for comparing and contrasting design options

The variation in the physics we

look for is much smaller

 Results from Belle II, ATLAS and CMS might change our goals dramatically







#### Rare decays

- Current Rare Decay anomalies in  $b \rightarrow s \ell^+ \ell^-$  decays can't tell us if we have new physics or if there are charm loop effects that we do not understand
- LHCb upgrade II will allow us to go from



#### Rare decays

- Current Rare Decay anomalies in  $b \rightarrow s \ell^+ \ell^-$  decays can't tell us if we have new physics or if there are charm loop effects that we do not understand
- LHCb upgrade II will allow us to go to



# Rare decays

- The "same" NP has to fit all the measurements
- Results here from 2020 consistency analysis of
  - Different decays and observables to same Wilson coefficients
  - Measurement of same Wilson coefficient in different kinematic regions
- Currently just proof-of-principle but will be strong constraints with upgrade II when uncertainties go down by ~ factor 5





Constraining the Unitary Triangle

 The "common knowledge" that a measurement of γ is a SM measurement, even in the presence of NP is not at all given

- The Wilson coefficients C<sub>1</sub> and C<sub>2</sub> control the non-leptonic tree level decays
- In reality constraints are no better than constraints on C<sub>9</sub> and C<sub>10</sub> from penguin decays ...
- Need to constrain Unitary Triangle without any assumptions





# Constraining the Unitary Triangle

Unitary Triangle will impose ever stronger NP constraints



- Two independent measurements of triangle apex
  - $(\Delta m_d/\Delta m_s$ , sin 2 $\beta$ ) and ( $V_{ub}$ ,  $\gamma$ )
  - Both pairs require upgrade II for statistics (sin 2β and γ) and time for theory improvements ( $\Delta m_d/\Delta m_s$  and  $V_{ub}$ )



# Lepton flavour universality

- Looking for New Physics by comparing decays with muons and electrons a huge challenge
- Calorimeter has to keep current performance with much higher occupancy
- Benefit is in terms of measurements with almost no theoretical uncertainty



#### Charm CP violation

- Time dependent CP violation in charm serves as an excellent null test for the SM
- Combined with excellent experimental reach this is very promising for upgrade II
- Side stations on magnets for low momentum tracking can improve flavour tagged sample by 20%





#### Conclusion

- The physics case is strong for Upgrade II of LHCb
  - Refer to arXiv:1808:08865 for further details
  - A bit like the research plan for a PhD, it should be seen as a possible direction and not a rule book for what we will do
- The theoretical uncertainties are significant in many areas
  - A mixture of improvements in the theory as well as clever data driven cross checks will keep this under control
- LHCb upgrade II plan is ambitious
  - Compromising might mean that we never even realise what gains we can make



#### 11;

#### Performance table

arXiv:1808.08865

Table 10.1: Summary of prospects for future measurements of selected flavour observables for LHCb, Belle II and Phase-II ATLAS and CMS. The projected LHCb sensitivities take no account of potential detector improvements, apart from in the trigger. The Belle-II sensitivities are taken from Ref. [608].

| Observable                                                                                                                       | Current LHCb                              | LHCb 2025                    | Belle II                               | Upgrade II                   | ATLAS & CMS       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------|----------------------------------------|------------------------------|-------------------|--|--|
| EW Penguins                                                                                                                      |                                           |                              |                                        |                              |                   |  |  |
| $\overline{R_K} \ (1 < q^2 < 6 \mathrm{GeV}^2 c^4)$                                                                              | 0.1 [274]                                 | 0.025                        | 0.036                                  | 0.007                        | _                 |  |  |
| $R_{K^*}$ $(1 < q^2 < 6 \mathrm{GeV}^2 c^4)$                                                                                     | 0.1 [275]                                 | 0.031                        | 0.032                                  | 0.008                        | _                 |  |  |
| $R_{\phi},~R_{pK},~R_{\pi}$                                                                                                      |                                           | 0.08,0.06,0.18               | _                                      | 0.02,0.02,0.05               | _                 |  |  |
| CKM tests                                                                                                                        |                                           |                              |                                        |                              |                   |  |  |
| $\gamma$ , with $B_s^0 \to D_s^+ K^-$                                                                                            | $\binom{+17}{-22}^{\circ}$ 136            | 4°                           | _                                      | 1°                           | _                 |  |  |
| $\gamma$ , all modes                                                                                                             | $\binom{+5.0}{-5.8}$ ° $\binom{167}{167}$ | 1.5°                         | $1.5^{\circ}$                          | $0.35^{\circ}$               | _                 |  |  |
| $\sin 2\beta$ , with $B^0 \to J/\psi K_S^0$                                                                                      | 0.04 [609]                                | 0.011                        | 0.005                                  | 0.003                        | _                 |  |  |
| $\phi_s$ , with $B_s^0 \to J/\psi \phi$                                                                                          | 49 mrad [44]                              | 14  mrad                     | _                                      | 4 mrad                       | 22 mrad [610]     |  |  |
| $\phi_s$ , with $B_s^0 \to D_s^+ D_s^-$                                                                                          | 170 mrad [49]                             | 35  mrad                     | _                                      | 9  mrad                      |                   |  |  |
| $\phi_s^{s\bar{s}s}$ , with $B_s^0 \to \phi\phi$                                                                                 | 154 mrad [94]                             | 39  mrad                     | _                                      | 11 mrad                      | Under study [611] |  |  |
| $a_{ m sl}^s$                                                                                                                    | $33 \times 10^{-4}$ [211]                 | $10 \times 10^{-4}$          | _                                      | $3 \times 10^{-4}$           |                   |  |  |
| $ V_{ub} / V_{cb} $                                                                                                              | 6% [201]                                  | 3%                           | 1%                                     | 1%                           | _                 |  |  |
| $B^0_s, B^0{ ightarrow}\mu^+\mu^-$                                                                                               |                                           |                              |                                        |                              |                   |  |  |
| $\frac{B_s^0, B^0 \rightarrow \mu^+ \mu^-}{\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)/\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)}$ | 90% [264]                                 | 34%                          | _                                      | 10%                          | 21% [612]         |  |  |
| $	au_{B_s^0 	o \mu^+\mu^-}$                                                                                                      | 22% [264]                                 | 8%                           | _                                      | 2%                           |                   |  |  |
| $S_{\mu\mu}$                                                                                                                     |                                           | _                            | _                                      | 0.2                          | _                 |  |  |
| $b \to c \ell^- \bar{\nu_l}$ LUV studies                                                                                         |                                           |                              |                                        |                              |                   |  |  |
| $R(D^*)$                                                                                                                         | 0.026 $215.217$                           | 0.0072                       | 0.005                                  | 0.002                        | _                 |  |  |
| $R(J/\psi)$                                                                                                                      | 0.24 220                                  | 0.071                        | _                                      | 0.02                         | _                 |  |  |
| <u>Charm</u>                                                                                                                     |                                           |                              |                                        |                              |                   |  |  |
| $\Delta A_{CP}(KK - \pi\pi)$                                                                                                     | $8.5 \times 10^{-4}$ 613                  | $1.7 \times 10^{-4}$         | $5.4 \times 10^{-4}$                   | $3.0 \times 10^{-5}$         | _                 |  |  |
| $A_{\Gamma} \ (\approx x \sin \phi)$                                                                                             | $2.8 \times 10^{-4}$ [240]                | $4.3 \times 10^{-5}$         | $3.5 \times 10^{-4}$                   | $1.0 \times 10^{-5}$         | _                 |  |  |
| $x \sin \phi$ from $D^0 \to K^+ \pi^-$                                                                                           | $13 \times 10^{-4}$ [228]                 | $3.2 \times 10^{-4}$         | $4.6 \times 10^{-4}$                   | $8.0 \times 10^{-5}$         | _                 |  |  |
| $x \sin \phi$ from multibody decays                                                                                              |                                           | $(K3\pi) 4.0 \times 10^{-5}$ | $(K_{\rm S}^0\pi\pi)~1.2\times10^{-4}$ | $(K3\pi) 8.0 \times 10^{-6}$ | _                 |  |  |