

ICHEP 2020 | PRAGUE

EP-DT Detector Technologies

Performance studies of RPC detectors operated with new environmentally friendly gas mixtures in presence of LHC-like radiation background

Roberto Guida, Beatrice Mandelli, Gianluca Rigoletti CERN

40th International Conference on High Energy Physics ICHEP 2020 CERN, 30 July 2020

Use of GHGs for RPC at CERN and possible eco-friendly alternatives

Characterisation of RPC with different eco-friendly gas mixtures

RPC operated with environmentally friendly gas mixtures at GIF++

GHG emissions at CERN

CERN GHG emissions from particle detectors

- Main contributor is C₂H₂F₄ used for ALICE, ATLAS and CMS RPC systems
- **Emissions mainly due to leaks** at detector level (fragile connectors) in ATLAS and CMS.
- On-going campaign for leaks reparation in LS2

 CERN strategies: see Roberto Guida's talk

 RPC
 RICH
 CERN strategies: see Roberto Guida's talk

European Union "F-gas regulation":

- Limiting the total amount of the most important F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
- **Banning the use** of F-gases where less harmful alternatives are widely available.
- **Preventing emissions** of F-gases from existing equipment by requiring checks, proper servicing and recovery

Prices are increasing in EU and availability in the future is not known. Reduction of use of $C_2H_2F_4$ is fundamental for next LHC Runs

Possible alternatives to C₂H₂F₄ and SF₆

New eco-friendly liquids/gases have been developed for industry as refrigerants and HV insulating medium... not straightforward for RPC operation R134a SF₆ $(C_2H_2F_4)$ **GWP 23900 GWP 1430** + others H_2C HFO-1234yf (flam) HFO-1234ze 3M[™] Novec[™] 5110 3M[™] Novec[™] 4710 $(C_3H_2F_4)$ $(C_{3}H_{2}F_{4})$ $(CF_{3}C(O)CF(CF_{3})_{2})$ $((CF_{a}), CFCN)$ **GWP** 4 **GWP** 6 **GWP** <1 **GWP 2100**

The goal is to find an <u>eco-friendly gas mixture</u> that is compatible with the <u>current ATLAS and CMS RPC systems</u> (i.e. no change in HV cables, FEB electronics, gas system, etc.)

Experimental set-up for RPC characterisation

Gas Mixing Unit - Up to 6 different gases - Gas system component validation CAEN Digitizer V1730 - 16 Channels - Resolution: 0.24 mV - Sampling: 500 MS/s **RPC** - 2 mm gap, high pressure laminate - read-out strips 2 cm Off-line data analysis: pulse charge, pulse height, time, etc. efficiency, avalanche/streamer ratio, **Gas Analysis** cluster size, time resolution, etc. - Gas Chromatograph and Mass Spectrometer - Ion Selective Electrode (F⁻ concentration)

HFO-based gas mixtures

HFO cannot directly replace C₂H₂F₄

- Higher applied voltage necessary (>12kV)
 - One C more with a double bond
- Small avalanche signal

Addition of He to lower the HV working point

- Helium helps in reducing the HV working point
 - in first approximation it doesn't take part in the avalanche processes
 - reduction of mixture density (gas pressure):
 +10%He —> 1 kV
- Addition of He in different concentrations
 - 20% 50% but increase of streamer probability when replacing C₂H₂F₄ with HFO
 - slight increase of SF₆ does not help
- Try with gas mixtures containing both HFO and C₂H₂F₄
 - HFO reduces the GWP
 - $C_2H_2F_4$ reduces the signal charge
- He discarded because of incompatibility problems with experiments
 - Presence of photomultipliers in the experimental caverns

HFO-based gas mixtures

Addition of CO₂ to lower the HV working point

- CO₂ is used as quencher gas in gaseous detectors
 - typically used in wire chambers and MPGDs
 - CO₂ has different quenching properties wrt iC₄H₁₀ (different absorption coefficient)
- CO_2 helps in reducing the HV working point: +10% CO_2 —> 800 V
- But streamer probability higher than RPC standard gas mixture
 - Necessary to keep a bit of $C_2H_2F_4$ and to increase the SF₆ concentration

SF₆ replacements

SF₆ has a very high GWP and it contributes for ~5% in the GWP of RPC gas mixture

3M[™] Novec[™] Dielectric fluids

- Very good alternative to SF₆ for arc quenching and insulation applications
 - Developed few years ago
 - Dielectric breakdown strength approximately 1.4-2 times that of SF₆
 - Especially used in HV industrial plants
- Novec 4710 (GWP 2100)
 - Very good performance but...
 - It may react with water
- Novec 5110 (GWP <1)
 - Very low GWP but..
 - RPC performance not optimal
 - sensitive to UV radiation

Other alternatives

- Looks for other gases not used only for HV plants
 - Other electronegative gases could work
- CF₃I (GWP 0.4)
 - Good performance but...
 - Toxic, mutagenic, ODP 0.008
- C₄F₈O (GWP ~8000)
 - Good performance at 1.5%
 - 1.5% C₄F₈O GWP equivalent to 0.5% SF₆

CERN Gamma Irradiation Facility (GIF++)

RPC performance studied at different gamma rates for 3 gas mixtures: standard gas mixture and two eco-friendly gas mixtures

★ 95.2/4.5/0.3 R134a/iC4H10/SF6
 ★ 22.25/22.25/50/4.5/1 R134a/HFO CO2/iC4H10/SF6
 ★ 27.25/27.25/40/4.5/1 R134a/HFO/CO2/iC4H10/SF6

- Gamma source

- ¹³⁷Cs of 14 Tb -> 662 keV gamma
- Lead filters to allow attenuation factors (ABS) between 1 and 46000

- Muon Beam

- 100 GeV and 10⁴ muons/spill (core beam size 10 cm x 10 cm)

ADS					
100	55.3				
220	41.2				
2200	3.75				
22000	0.774				

preparatior zone

Detector performance

- Test-beam measurements confirm laboratory tests
 - HV shift when operating with HFO gas mixtures
 - Higher streamer probability for HFO gas mixtures
- Detector currents are higher for both HFO gas mixtures
 - The voltage drop due to high radiation is higher with the HFO-based gas mixtures
- The efficiency as a function of HV_{gas} does not depends on the background radiation for the three gas mixtures
 - The streamer probability decreases with the increase of background radiation due to space charge effects

Beatrice Mandelli

Detector performance

- The avalanche charge is higher for these eco-friendly gas mixtures
- The streamer charge is lower for these eco-friendly gas mixtures
 - They decrease with the increase of radiation, probably due to charge development effects

Creation of impurities under irradiation

Impurities created from R134a and HFO breaking

- Under the effects of high background radiation and electric field, freon molecules break into fluorine radicals
 - Creation of F- radical free: very chemical reactive
 - Sub-products in the order of hundreds ppm
 - Accumulation in case of closed loop system
- Impurities present in the RPCs at LHC experiments in Run 2
 - Not well know the maximum limit for safety of the detector

HFO breaks ~10 times more easily than C₂H₂F₄ ↓ Is there any risk for long-term detector

operation?

Conclusions

R&D goal: to find an eco-friendly gas mixture that is compatible with the current ATLAS and CMS RPC systems

Eco-friendly gas mixtures for RPCs

- Direct substitution of C₂H₂F₄ and SF₆ with corresponding eco-gases available in the market is not suitable to achieve RPC performance needed
- No many alternatives available on the market

Characterisation of RPCs with different eco-friendly gas mixtures

- More than 50 gas mixtures tested (often gas mixtures made of 4-6 components)
- Necessary to add a gas to lower the HV working point of HFO-based gas mixtures
- Few eco-eco-friendly gas mixtures show similar properties with respect to standard gas mixture

RPC operation with eco-friendly gas mixtures under high background radiation

- RPC tested up to ~ 300 Hz/cm²
- Higher currents and streamer probability with HFO-based gas mixtures
- HFO seems to break more easily than C₂H₂F₄: studies on-going to understand possible effects

Back-up slides

Summary table of gas mixtures tested

More than 50 gas mixtures tested

	Chem struc	GWPmix	HV (V)	Streamer (%)	Pulse charge (pC)	∆V Eff- Stream (V)	Clu Size (strip)
R32-iC ₄ H ₁₀ -SF ₆ 0.6	С	1030	7500	14	0.5 / 6.5	600	1.5
R134a-iC4H10-SF6 0.3	C-C	1490	9600	1.5	0.5/6	1000	1.5
R152a-iC ₄ H ₁₀ -SF ₆ 0.6	C-C	430	10000	10	1 / 8.5	760	1.6
R245fa-iC ₄ H ₁₀ -SF ₆ 0.6-He 50	C-C-C	1260	6600	20	1/7	610	2
HFO-iC ₄ H ₁₀ -SF ₆ 0.3-Ar 42.5	C=C-C	130	8900	70	2/15	160	4
HFO-iC4H10-SF6 0.6-He 50	C=C-C	370	9000	20	1.5/8	700	4
HFO-R134 37.45-iC ₄ H ₁₀ -SF ₆ 0.6-He 20	с=с-с	890	10500	1.8	0.5/6	970	1.6
HFO-R134a 50-iC ₄ H ₁₀ -He 20	C=C-C	430	10800	50	1.5 / 8	400	2.5
HFO-R134a 22.5 -iC ₄ H ₁₀ -CO ₂ 50- SF ₆ 1	C=C-C	560	10500	5	1.5 / 7.5	950	1.5

- C and C2 structures -> direct operation
- C3 structure (HFO) —> addition of Ar, He or CO₂
 - Ar brings to high streamer probability
 - He and CO₂ based gas mixtures look promising but need to add more SF₆
- Still necessary to have R134a in the mixture to be competitive to standard gas mixture

Why is difficult to find good GHG alternatives?

Eco-friendly alternatives are developed for industry and not for gaseous detectors!

- Ionisation processes not well understood
 - What are the differences between HFO and C₂H₂F₄?
 - Substitution 1 by 1 does not work in RPC detectors
- Even more difficult in case of LHC RPC systems
 - not possible to change FEB, HV cables, etc.
- Operation can be difficult
 - Flammability, toxicity, liquefaction, sub-products, etc.

The GWP is determined by atmospheric lifetime and IR absorption cross sections

Gas recirculation

RPC detectors at LHC are working under gas recirculation: important to validate RPC operation under gas recirculation and high background rate

- RPCs operated under gas recirculation with ecofriendly gas mixture in laboratory
 - Cosmics (low currents)
 - Performance were stable
- Now RPCs under gas recirculation at GIF++
 - Very high gamma rate
 - Up to 100% recirculation
 - Creation of impurities with radiation
- Monitoring of currents and performance

Gas mixture: 22.25/22.25/50/4.5/1R134a/HFO/CO₂/iC₄H₁₀/SF₆

What about other HFCs?

