

Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters

Contents

- Particle Flow Calorimetry
- CALICE High-granularity Calorimeters
- Hadronic Shower Studies
- Hadronic Energy Reconstruction
- Time Structure of Hadronic Shower
- Summary

W. Ootani, ICEPP Univ. of Tokyo on behalf of the CALICE collaboration ICHEP2020, Jul. 31st, 2020

unprecedented jet energy resolution of 3-4%

CALICE Highly Granular Calorimeters for PFA-baed Calorimetry

Goal of CALICE collaboration

 Development of PFA-based high granularity calorimeters for future collider experiments

Several technology options to realise PFA calorimeters

• See previous talk by V. Boudry(#625) for technical implementation of CALICE calorimeters

SDHCAL Description

- ampling calorimeter
- ize : 51 stainless steel plates + 50 active
- iyers $\rightarrow 1 \times 1 \times 1.3 m^3$
- ctive layer :
- Gaseous detector : GRPC (Glass Resistive Plate Chamber) of $1m^2$
- Gas mixture : 93% *TFE*; 5% *CO*₂; 2% *SF*₆
- HV : $\sim 6.9 kV$ in avalanche mode
- eadout :
- 96 \times 96 pads per layer \Rightarrow more than 460k channels for the whole prototype
- Semi-digital readout : 3 thresholds on the induced charge to have a better idea on the deposited energy

adiator :

- 50 \times 20mm stainless steel $\Rightarrow \sim 6\lambda_I$

AHCAL

- Scintillate
- 12×12 cm
- Analogue
- Steel or T
- 38 layers

iteen (IPNL / Université Lyon 1)	Results of the SDHCAL technological prototype	14/11/2013 4 /
		e. When the
flown to Conova		/F1/2013 88.3
nown to Geneva		the inside of t
rvived transportation		nide flat cable
		62 mechanical
		de plates align
		e oferadrodide

TRANULAR Calorimeters Test Beam Prototypes

or tiles (3×3, 6×6,	
12, 7608 sh)	
±standard	
ungsten absorber	
(5.3) for light	
ole on the	

DHCAL

SDHCAL

- **GRPC** (up to 500000 cells (1×1cm² each))
- Digital (1bit) or semi-digital (2bit, multi-threshold) readout
- Steel or Tungsten absorber
- Up to 48 layers ($\sim 6\lambda$)

ag directly irrect; sdioutilitheter concept shade is used, $\pm 284\%$ of that the scintillator e, as shown in electronics, power pulsing, mechanical structure,...) frame. Each ned to make a

shower anghthe hadronic energy reconstruction with highly granular calorimeters", ICHEP2020, Jul. 31st, 2020

Hadronic Shower Why It Matters?

Hadronic showers are quite complex

- Initiated by hard collision of incident hadron with a nucleus
- Narrow core of electromagnetic cascades by photons from π^0/η^0
- Surrounding halo dominated by charged hadrons
- Large event-by-event fluctuation of electromagnetic and hadronic components ratio
- Invisible energies as nuclear binding energy, nuclear recoil, late component
 - → limited hadronic energy resolution

Correct understanding hadronic shower is crucial

GEANT4 hadronic shower model

- Modelling of hadronic shower @GEANT4 is not perfect
- CALICE test beam data to validate GEATN4 shower model

Studies on hadronic showers using test beam data with prototypes of CALICE high-granularity calorimeters will be presented in this talk

Hadronic Shower Studies AHCAL

Longitudinal shower profile measured by AHCAL

- Test beam data: positive pion and proton 10-80GeV@CERN and FNAL
- Decompose shower components
 - Short component: electromagnetic component
 - Long component: hadronic component
- Extract ratio of hadronic to electromagnetic response (h/e)

$$f(z) = A \cdot \left\{ \frac{f}{\Gamma(\alpha_{\text{short}})} \cdot \left(\frac{z}{\beta_{\text{short}}}\right)^{\alpha_{\text{short}}-1} \cdot \frac{e^{-z/\beta_{\text{short}}}}{\beta_{\text{short}}} + \frac{1-f}{\Gamma(\alpha_{\text{long}})} \cdot \left(\frac{z}{\beta_{\text{long}}}\right)^{\alpha_{\text{long}}-1} \cdot \frac{e^{-z/\beta_{\text{long}}}}{\beta_{\text{long}}} \right\}$$

reconstruction with highly granular calorimeters ", ICHEP2020, Jul. 31st, 2020

Hadronic Shower Studies **SDHCAL**

- Test beam: 5-80GeV pions @CERN SPS

Radial profile is narrower in simulation

Hadronic Shower Studies SiW-ECAL

Shower studies with low energy hadrons using SiW-ECAL

• Test beam: negative pions 2-10GeV @FNAL

Comparison with simulation

- Agreement to within 20% (much closer for most observables)

Wataru OOTANI "Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters", ICHEP2020, Jul. 31st, 2020

NIM A794 (2015) 240-254

Track Segments@SDHCAL

• Study fine shower structure using track segments

• Test beam data: pions 10-80GeV@CERN SPS

Track segments found in dense hadronic shower

- Track finding based on Hough Transform

- SiW-ECAL
- AHCAL

Wataru OOTANI "Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters", ICHEP2020, Jul. 31st, 2020

JINST 13(2018)P12022

Hadronic Energy Reconstruction **Software Compensation@Scintillator Calorimeters**

Energy reconstruction with software-based compensation

Multi-thresholds readout of SDHCAL

Wataru OOTANI "Exploring the structure

with highly granular calorimeters ", ICHEP2020, Jul. 31st, 2020

Time Structure of Hadronic Shower Toward 5D-Calorimetry

CALICE T3B Experiment

- Small dedicated setup of 15 scintillator tiles (30×30mm²) with SiPMs placed behind CALICE hadron calorimeters (W-AHCAL, Fe-SDHCAL)
- Radial sampling of structure of hadronic showers with sub-ns time resolution over 2.4µs time window
- More late component in tungsten than in steel

• Hit time measurement capability at AHCAL technological prototype

- Hit time resolution of 1.6ns for muons @AHCAL technological prototype
 - Currently limited by front-end electronics
- Analysis for hadrons also in progress

Wataru OOTANI "Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters", ICHEP2020, Jul. 31st, 2020

CALICE T3B JINST 9(2014)P07022

• Development of high-granularity calorimeters for future e⁺e⁻ collider experiments by CALICE collaboration

• High granularity calorimeter is a key to the unprecedented jet energy resolution with the particle flow calorimetry

• Test beam prototypes with high-granularity provide excellent opportunities to study hadronic showers

- Detailed studies on spatial and temporal shower structures
- Optimal energy reconstruction exploiting detailed properties of shower structure
- Validation of modelling of hadronic shower in GEANT4

More results soon to come from recent test beam experiments with technological prototypes

Backup

Hadronic Shower Studies AHCAL

Hadronic shower studies by AHCAL

- Test beam data: positive pion and proton 10-80GeV@CERN and FNAL
- Simulation
 - GEANT4 ver9.6
 - Physics lists: FTP_BERT, QGP_BERT

Comparison between pion- and proton-induced hadronic showers

- Longitudinal segmentation allows to measure shower start on event-by-event basis
- Interaction length extracted from distribution of shower start which can be measured on event-by-event basis
- Good agreement as calculated from detector compounds

Particle Separation/Identification SDHCAL

Separation of neutral hadron shower from nearby charged hadron

shower

- Test beam data: 10-80GeV pions @CERN SPS
- 10GeV "fake" neutral hadron shower is generated by removing initial track segment and overlaid on charged hadron showers
- >90% efficiency and purity for nearby showers for distance>15cm

Particle identification with multi-variate analysis

- Test beam data: 10-80GeV pions @CERN SPS
- BDT improves pion selection efficiency at low energies

arXiv:2004.02972, accepted by JINST

Wataru OOTANI "Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters", ICHEP2020, Jul. 31st, 2020

CALICE-CAN-2015-001

Separation of 10GeV neutral hadron from charged hadron

