The CMS Level-1 Endcap Muon Trigger at the High-Luminosity LHC

40th International Conference of High Energy Physics July 29th, 2020

Daniel Guerrero on behalf of CMS Collaboration University of Florida daniel.querrero@cern.ch UF | UNIVERSITY | The Collaboration UF | The Collaboration | UNIVERSITY | UNIVERSITY

CMS Phase-2 Muon Detectors & Level-1 Trigger Upgrade

New territory to be explored at the High Luminosity-LHC

- \sqrt{s} = 14 TeV pp collisions, 7.5 x 10³⁴cm⁻² s⁻¹ instantaneous luminosity, 200 pile-up (PU)
- Challenging data-taking conditions: High particle multiplicity & intense radiation environment
- Upgrades to overcome challenges & fully exploit 4000 fb⁻¹ of integrated luminosity

Muon Subdetectors Upgrade

- Consolidated electronics in current Phase-1 chambers
- More accurate information for the Level-1 trigger
 - Position, time, quality & bend of local hits (stubs)
- **Extended coverage in forward region (up to |\eta|=2.8)**

Level-1 Trigger Upgrade

- Architecture with four independent trigger paths:
 - Calorimeter, muon, <u>tracker & particle-flow</u>
- New correlator layer:
 - Multiple objects correlation & high-level triggers generation

Triggering on endcap muons at the HL-LHC

Momentum resolution improvement is key → Rate mitigation & access to lower trigger thresholds

Endo Regio

Endcap standalone prompt muon reconstruction (EMTF++)

Region with complex detector geometry, nonuniform magnetic field & punch-through

- Set of stubs compatible with a muon track are found via <u>pattern recognition</u>
- Stub information is then used to get PT-assignment using a neural network(NN)
- \sim 20 kHz rate at 20 GeV PT threshold \rightarrow ~2.5 x lower rate w.r.t. Phase-1 algorithm (EMTF)
- Similar technique allows for displaced muon reconstruction

Track-correlated muons in Global Muon Trigger (GMT) / Correlator

Tracker tracks (Tk) are matched to EMTF++ tracks or individual muon stubs via Pt-dependent

 $\Delta \phi / \Delta \eta$ windows to push further the performance:

Tk + EMTF++: 15-30%→3% PT resolution

■ Tk + muon stub: ~99% efficient for Pт >5 GeV

<u>Topological muons</u>, e.g. 'Muon-jet' with 3 objects

■ Better acceptance at low PT & forward region $\tau \rightarrow 3\mu$ decays: ~5-10 x better than Phase-1 trigger

All GMT objects are sent to the global trigger (GT)

to issue the L1 decision based on the menu of (muon) algorithms

HL-LHC Endcap Muon Trigger Prospects

Preliminary hardware demonstration

Endcap muon trigger demonstrator setup

We have tests already performed with Virtex 9 Ultrascale+ (VU9P) FPGA

- EMTF++ algorithm
 - Phase-1 track-building firmware
 - NN firmware is written in Vivado HLS via HLS4ML software
 - Resources will be able to accommodate prompt & displaced muons
- Tk + EMTF++ correlator
 - Firmware implementation is validated with simulated muons
 - Resource usage is modest & dominated by look-up tables

Summary and Outlook

- Broad physics phase space will be explored given the Phase-2 upgrades & the unprecedented large dataset
- The new and improved endcap muon trigger objects will enable a large part of the HL-LHC program
- First hardware demonstrators shows the feasibility of the new endcap muon algorithms
- A rich software, firmware and hardware program is on-going

References:

- [1] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors, CERN-LHCC-2017-012 (2017)
- [2] CMS Collaboration, The Phase-2 Upgrade of the CMS Level-1 Trigger, <u>CERN-LHCC-2020-004</u> (2020)