ICHEP 2020 | PRAGUE

VIRTUAL

CONFERENCE

40th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

28 JULY - 6 AUGUST 2020 PRAGUE, CZECH REPUBLIC

QCD Effects in Lepton Angular Distributions of Drell-Yan/Z Production and Jet Discrimination

Wen-Chen Chang

Institute of Physics, Academia Sinica

collaborating with

Jen-Chieh Peng, Randall Evan McClellan, and Oleg Teryaev

Lepton angular distributions of Drell-Yan process

2

 $\lambda = \frac{2 - 3A_0}{2 + A_0}$

Angular Distributions of Lepton Pairs from Z/γ^*

 $\frac{d\sigma}{d\Omega} \propto \left[(1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi \right]$ $+A_3\sin\theta\cos\phi + A_4\cos\theta$ $+A_{5}\sin^{2}\theta\sin 2\phi + A_{6}\sin 2\theta\sin \phi + A_{7}\sin \theta\sin \phi$ $A_3, A_4: \gamma^* / Z$ interference, sensitive to $\sin^2 \theta_W$ $A_{\varsigma}, A_{\varsigma}, A_{\tau} := 0$, up to $O(\alpha_s^1)$

pQCD: O(
$$\alpha_s^1$$
), ; $1 - \lambda - 2\nu = \frac{4(A_0 - A_2)}{2 + A_0} = 0$; $A_0 = A_2$
Lam-Tung Relation [PRD 18 (1978) 2447]

252-GeV π⁻+W (fixed-target) E615 @ FNAL: Violation of LT Relation PRD 39, 92 (1989)

Angular Distributions of Z Production CMS, PLB750, 154 (2015)

 A_1, A_3 and A_4 show y-dependence, but not A_0 and A_2

Violation of Lam-Tung relation $A_0 \neq A_2$ 6

Angular Distributions of Z Production

ATLAS, JHEP08, 159 (2016)

Drell-Yan Angular Distributions

• Features:

- Distinctive q_T dependence.
- Lam-Tung violation:
 - $1 \lambda 2\nu \neq 0$ for fixed-target experiments
 - $A_0 A_2 \neq 0$ for collider experiments.
- Rapidity dependence for A_1 , A_3 , and A_4 .
- Can these features be understood by pQCD?
- Is there any simple picture for interpretation?

CMS vs. NNLO: $O(\alpha_s^3)$

 $LO: O(\alpha_s^1); NLO: O(\alpha_s^2); NNLO: O(\alpha_s^3)$

ATLAS vs. NNLO: $O(\alpha_s^3)$

 $LO: O(\alpha_s^1); NLO: O(\alpha_s^2); NNLO: O(\alpha_s^3)$

Lam-Tung Violation: $A_0 - A_2$

JHEP11(2017)003

CMS: Z + jet(s)

J.C. Peng et al., PLB 797, 134895 (2019)

W.C. Chang et al., PRD 99, 014032 (2019)

COMPASS: pQCD calculations

NLO: $O(\alpha_s^1)$; *NNLO*: $O(\alpha_s^2)$ COMPASS π^- +W at 190 GeV

W.C. Chang et al., PRD 99, 014032 (2019)

Drell-Yan Angular Distributions

• Features:

- Distinctive q_T dependence.
- Lam-Tung violation:
 - $1 \lambda 2\nu \neq 0$ for fixed-target experiments
 - $A_0 A_2 \neq 0$ for collider experiments.
- Rapidity dependence for A_1 , A_3 , and A_4 .
- Can these features be understood by pQCD?
 Partially YES!
- Is there any simple picture for interpretation?

A geometric picture:

J.C. Peng, W.C. Chang, R.E. McClellan, O. Teryaev, PLB 758, 394 (2016) W.C. Chang, R.E. McClellan, J.C. Peng, O. Teryaev, PRD 96, 054020 (2017)

Natural Axis \hat{z}'

Lepton angular distributions with respect to the natural axis \hat{z}' :

$$\frac{d\sigma}{d\Omega} \propto 1 + a\cos\theta_0 + \lambda_0\cos^2\theta_0$$

- Drell-Yan, trans. polarized quarkonium: $\lambda_0 = +1$
- Unpolarized quarkonium: $\lambda_0 = 0$
- Longi. polarized quarkonium: $\lambda_0 = -1$

Express the measured lepton angular distributions $(\cos \theta, \phi)$ with respect to the natural axis \hat{z}' :

 $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$

Intrinsic k_T , non-collinear effects: $\theta_1, \phi_1 \neq 0$

Lepton angular distributions w.r.t. the natural axis \hat{z}'

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + \frac{4}{2} (1$$

$$\begin{bmatrix} A_0 - A_7 & \text{are entirely described by } \theta_1, \varphi_1 & \text{and } a. \end{bmatrix}$$

$$A_0 = \langle \sin^2 \theta_1 \rangle \qquad A_3 = a \langle \sin \theta_1 \cos \phi_1 \rangle \qquad A_5 = \frac{1}{2} \langle \sin^2 \theta_1 \sin 2\phi_1 \rangle$$

$$A_1 = \frac{1}{2} \langle \sin 2\theta_1 \cos \phi_1 \rangle \qquad A_4 = a \langle \cos \theta_1 \rangle \qquad A_6 = \frac{1}{2} \langle \sin 2\theta_1 \sin \phi_1 \rangle$$

$$A_2 = \langle \sin^2 \theta_1 \cos 2\phi_1 \rangle \qquad A_7 = a \langle \sin \theta_1 \sin \phi_1 \rangle$$

(Non-)Coplanarity of Quark Plane and Hadron Plane $A_0 = \langle \sin^2 \theta_1 \rangle A_2 = \langle \sin^2 \theta_1 \cos 2\phi_1 \rangle$

•
$$O(\alpha_s^1)$$
: $\phi_1 = 0, \pi. A_0 = A_2$

- $O(\alpha_s^2)$ or higher: $\phi_1 \neq 0, \pi$ $\Rightarrow A_0 > A_2 (1 - \lambda - 2\nu > 0)$ q \downarrow^g
 - q eee g l
- Intrinsic k_T of interacting partons: $\phi_1 \neq 0, \pi$ $\rightarrow A_0 > A_2 (1 - \lambda - 2\nu > 0)$

Cancelation Effect for $A_1(\nu)$, A_3 and A_4

•
$$O(\alpha_S^1)$$
: $\theta_1 = \beta, \pi - \beta; \phi_1 = 0, \pi$

 q_B

 \overline{q}_T

 \overline{q}_B

(c)

(c)

$$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$$

(d)

(d)

$$q_T$$

 q_T
 q_{T}
 q_{R}
 q_{R}

(a) (b)

$$q_T$$
 g
 $l^ \bar{q}_{,B}$
 \hat{r}
 $\bar{q}_{,B}$
 $\bar{q}_{,B}$
 $\bar{q}_{,B}$
 \bar{q}
 $\bar{q}_{,B}$
 $\bar{q}_{,B}$
 $\bar{q}_{,B}$
 $\bar{q}_{,B}$
 \bar{q}
 $\bar{$

$$\theta_1 = \pi - \beta; \ \phi_1 = 0$$

 $\theta_1 = \pi - \beta; \ \phi_1 = \pi$

$$\theta_1 = \pi - \beta; \ \phi_1 = 0$$

$$A_{0} = \left\langle \sin^{2} \theta_{1} \right\rangle \qquad A_{1} = \frac{1}{2} \left\langle \sin 2\theta_{1} \cos \phi_{1} \right\rangle$$
$$A_{2} = \left\langle \sin^{2} \theta_{1} \cos 2\phi_{1} \right\rangle \qquad A_{3} = a \left\langle \sin \theta_{1} \cos \phi_{1} \right\rangle$$
$$A_{4} = a \left\langle \cos \theta_{1} \right\rangle$$

TABLE I. Angles θ_1 and ϕ_1 for four cases of gluon emission in the $q - \bar{q}$ annihilation process at order- α_s . The signs of A_0 to A_4 for the four cases are also listed.

Case	Gluon emitted from	θ_1	ϕ_1	A_0	A_1	A_2	A_3	A_4
1	Beam quark	β	0	+	+	+	+	+
2	Target antiquark	β	π	+	—	+	_	+
3	Beam antiquark	$\pi - \beta$	0	+	—	+	+	-
4	Target quark	$\pi - \beta$	π	+	+	+	—	_

A cancelation effect leads to a strong rapidity-dependence of $A_1(\nu)$, A_3 and A_4 .

Summary

- pQCD calculations describe the Drell-Yan angular distributions from colliders at large q_T . Deviation seen in the fixed-target data.
- Angular distributions of Z+jets are different for the quark and gluon jets.
- Features of the data and pQCD calculations could be interpreted by a geometric picture of the natural $q \overline{q}$ axis:
 - Violation of the Lam-Tung relation $(A_0 \neq A_2)$ is caused by the non-coplanarity between the quark plane and the hadron plane. $A_0 > A_2$ from NNLO.
 - A cancelation effect leads to strong rapidity dependence of A_1 , A_3 and A_4 (or μ).

References

- "Interpretation of Angular Distributions of Z-boson Production at Colliders", J.C. Peng, W.C. Chang, R.E. McClellan, and O. Teryaev, <u>Phys. Lett. B 758, 394 (2016) [arXiv:1511.08932]</u>.
- "Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in pp collisions at the LHC", W.C. Chang, R.E. McClellan, J.C. Peng, and O. Teryaev, <u>Phys. Rev. D 96, 054020 (2017) [arXiv:1708.05807]</u>.
- "On the Rotational Invariance and Non-Invariance of Lepton Angular Distributions in Drell-Yan and Quarkonium Production ", J.C. Peng, D. Boer, W.C. Chang, R.E. McClellan and O. Teryaev, Phys. Lett. B 789, 356 (2019) [arXiv:1808.04398].
- "Lepton Angular Distributions of Fixed-target Drell-Yan Experiments in Perturbative QCD and a Geometric Approach", W.C. Chang, R.E. McClellan, J.C. Peng, and O. Teryaev, Phys. Rev. D 99, 014032 (2019) [arXiv:1811.03256].
- "Lepton angular distribution of Z boson production and jet discrimination", J.C. Peng, W.C. Chang, R.E. McClellan and O. Teryaev, <u>Phys. Lett. B 797, 134895 (2019) [arXiv:1907.10483]</u>.

Thanks for your attention!

